ruffle/render/wgpu/src/lib.rs

1544 lines
56 KiB
Rust

use crate::bitmaps::BitmapSamplers;
use crate::globals::Globals;
use crate::pipelines::Pipelines;
use crate::target::{RenderTarget, RenderTargetFrame, SwapChainTarget};
use crate::uniform_buffer::UniformBuffer;
use crate::utils::{create_buffer_with_data, format_list, get_backend_names};
use bytemuck::{Pod, Zeroable};
use enum_map::Enum;
use fnv::FnvHashMap;
use ruffle_core::backend::render::{
Bitmap, BitmapHandle, BitmapSource, Color, RenderBackend, ShapeHandle, Transform,
};
use ruffle_core::color_transform::ColorTransform;
use ruffle_core::shape_utils::DistilledShape;
use ruffle_core::swf;
use ruffle_render_common_tess::{
DrawType as TessDrawType, Gradient as TessGradient, GradientType, ShapeTessellator,
Vertex as TessVertex,
};
use std::num::NonZeroU32;
use std::path::Path;
pub use wgpu;
type Error = Box<dyn std::error::Error>;
#[macro_use]
mod utils;
mod bitmaps;
mod globals;
mod pipelines;
pub mod target;
mod uniform_buffer;
#[cfg(feature = "clap")]
pub mod clap;
pub struct Descriptors {
pub device: wgpu::Device,
pub info: wgpu::AdapterInfo,
pub limits: wgpu::Limits,
pub surface_format: wgpu::TextureFormat,
frame_buffer_format: wgpu::TextureFormat,
queue: wgpu::Queue,
globals: Globals,
uniform_buffers: UniformBuffer<Transforms>,
pipelines: Pipelines,
bitmap_samplers: BitmapSamplers,
msaa_sample_count: u32,
}
impl Descriptors {
pub fn new(
device: wgpu::Device,
queue: wgpu::Queue,
info: wgpu::AdapterInfo,
surface_format: wgpu::TextureFormat,
) -> Result<Self, Error> {
let limits = device.limits();
// TODO: Allow this to be set from command line/settings file.
let msaa_sample_count = 4;
let bitmap_samplers = BitmapSamplers::new(&device);
let globals = Globals::new(&device);
let uniform_buffer_layout_label = create_debug_label!("Uniform buffer bind group layout");
let uniform_buffer_layout =
device.create_bind_group_layout(&wgpu::BindGroupLayoutDescriptor {
entries: &[wgpu::BindGroupLayoutEntry {
binding: 0,
visibility: wgpu::ShaderStages::VERTEX | wgpu::ShaderStages::FRAGMENT,
ty: wgpu::BindingType::Buffer {
ty: wgpu::BufferBindingType::Uniform,
has_dynamic_offset: true,
min_binding_size: None,
},
count: None,
}],
label: uniform_buffer_layout_label.as_deref(),
});
let uniform_buffers = UniformBuffer::new(
uniform_buffer_layout,
limits.min_uniform_buffer_offset_alignment,
);
// We want to render directly onto a linear render target to avoid any gamma correction.
// If our surface is sRGB, render to a linear texture and than copy over to the surface.
// Remove Srgb from texture format.
let frame_buffer_format = match surface_format {
wgpu::TextureFormat::Rgba8UnormSrgb => wgpu::TextureFormat::Rgba8Unorm,
wgpu::TextureFormat::Bgra8UnormSrgb => wgpu::TextureFormat::Bgra8Unorm,
wgpu::TextureFormat::Bc1RgbaUnormSrgb => wgpu::TextureFormat::Bc1RgbaUnorm,
wgpu::TextureFormat::Bc2RgbaUnormSrgb => wgpu::TextureFormat::Bc2RgbaUnorm,
wgpu::TextureFormat::Bc3RgbaUnormSrgb => wgpu::TextureFormat::Bc3RgbaUnorm,
wgpu::TextureFormat::Bc7RgbaUnormSrgb => wgpu::TextureFormat::Bc7RgbaUnorm,
wgpu::TextureFormat::Etc2Rgb8UnormSrgb => wgpu::TextureFormat::Etc2Rgb8Unorm,
wgpu::TextureFormat::Etc2Rgb8A1UnormSrgb => wgpu::TextureFormat::Etc2Rgb8A1Unorm,
wgpu::TextureFormat::Etc2Rgba8UnormSrgb => wgpu::TextureFormat::Etc2Rgba8Unorm,
wgpu::TextureFormat::Astc {
block,
channel: wgpu::AstcChannel::UnormSrgb,
} => wgpu::TextureFormat::Astc {
block,
channel: wgpu::AstcChannel::Unorm,
},
_ => surface_format,
};
let pipelines = Pipelines::new(
&device,
surface_format,
frame_buffer_format,
msaa_sample_count,
bitmap_samplers.layout(),
globals.layout(),
uniform_buffers.layout(),
)?;
Ok(Self {
device,
info,
limits,
surface_format,
frame_buffer_format,
queue,
globals,
uniform_buffers,
pipelines,
bitmap_samplers,
msaa_sample_count,
})
}
}
pub struct WgpuRenderBackend<T: RenderTarget> {
descriptors: Descriptors,
target: T,
frame_buffer_view: Option<wgpu::TextureView>,
depth_texture_view: wgpu::TextureView,
copy_srgb_view: Option<wgpu::TextureView>,
copy_srgb_bind_group: Option<wgpu::BindGroup>,
current_frame: Option<Frame<'static, T>>,
meshes: Vec<Mesh>,
mask_state: MaskState,
shape_tessellator: ShapeTessellator,
num_masks: u32,
quad_vbo: wgpu::Buffer,
quad_ibo: wgpu::Buffer,
quad_tex_transforms: wgpu::Buffer,
bitmap_registry: FnvHashMap<BitmapHandle, RegistryData>,
next_bitmap_handle: BitmapHandle,
}
struct RegistryData {
bitmap: Bitmap,
texture_wrapper: Texture,
}
#[allow(dead_code)]
struct Frame<'a, T: RenderTarget> {
frame_data: Box<(wgpu::CommandEncoder, T::Frame, wgpu::CommandEncoder)>,
// TODO: This is a self-reference to the above, so we
// use some unsafe to cast the lifetime away. We know this
// is safe because the anpve data should live for the
// entire frame and is boxed to have a stable address.
// We could clean this up later by adjusting the
// RenderBackend interface to return a Frame object.
render_pass: wgpu::RenderPass<'a>,
}
impl<'a, T: RenderTarget> Frame<'static, T> {
// Get a reference to the render pass with the proper lifetime.
fn get(&mut self) -> &mut Frame<'a, T> {
unsafe { std::mem::transmute::<_, &mut Frame<'a, T>>(self) }
}
}
#[derive(Debug, Clone, Copy, PartialEq, Eq, Enum)]
pub enum MaskState {
NoMask,
DrawMaskStencil,
DrawMaskedContent,
ClearMaskStencil,
}
#[repr(C)]
#[derive(Copy, Clone, Debug, Pod, Zeroable)]
struct Transforms {
world_matrix: [[f32; 4]; 4],
color_adjustments: ColorAdjustments,
}
#[repr(C)]
#[derive(Copy, Clone, Debug, Pod, Zeroable)]
struct TextureTransforms {
u_matrix: [[f32; 4]; 4],
}
#[repr(C)]
#[derive(Copy, Clone, Debug, Pod, Zeroable)]
struct ColorAdjustments {
mult_color: [f32; 4],
add_color: [f32; 4],
}
impl From<ColorTransform> for ColorAdjustments {
fn from(transform: ColorTransform) -> Self {
Self {
mult_color: transform.mult_rgba_normalized(),
add_color: transform.add_rgba_normalized(),
}
}
}
#[repr(C)]
#[derive(Copy, Clone, Debug, Pod, Zeroable)]
struct Vertex {
position: [f32; 2],
color: [f32; 4],
}
impl From<TessVertex> for Vertex {
fn from(vertex: TessVertex) -> Self {
Self {
position: [vertex.x, vertex.y],
color: [
f32::from(vertex.color.r) / 255.0,
f32::from(vertex.color.g) / 255.0,
f32::from(vertex.color.b) / 255.0,
f32::from(vertex.color.a) / 255.0,
],
}
}
}
#[repr(C)]
#[derive(Copy, Clone, Debug, Pod, Zeroable)]
struct GradientUniforms {
colors: [[f32; 4]; 16],
ratios: [f32; 16],
gradient_type: i32,
num_colors: u32,
repeat_mode: i32,
interpolation: i32,
focal_point: f32,
_padding: [f32; 3],
}
impl From<TessGradient> for GradientUniforms {
fn from(gradient: TessGradient) -> Self {
let mut ratios = [0.0; 16];
let mut colors = [[0.0; 4]; 16];
ratios[..gradient.num_colors].copy_from_slice(&gradient.ratios[..gradient.num_colors]);
colors[..gradient.num_colors].copy_from_slice(&gradient.colors[..gradient.num_colors]);
Self {
colors,
ratios,
gradient_type: match gradient.gradient_type {
GradientType::Linear => 0,
GradientType::Radial => 1,
GradientType::Focal => 2,
},
num_colors: gradient.num_colors as u32,
repeat_mode: match gradient.repeat_mode {
swf::GradientSpread::Pad => 0,
swf::GradientSpread::Repeat => 1,
swf::GradientSpread::Reflect => 2,
},
interpolation: (gradient.interpolation == swf::GradientInterpolation::LinearRgb) as i32,
focal_point: gradient.focal_point.to_f32(),
_padding: Default::default(),
}
}
}
#[derive(Debug)]
struct Mesh {
draws: Vec<Draw>,
}
#[derive(Debug)]
struct Draw {
draw_type: DrawType,
vertex_buffer: wgpu::Buffer,
index_buffer: wgpu::Buffer,
num_indices: u32,
num_mask_indices: u32,
}
#[allow(dead_code)]
#[derive(Debug)]
enum DrawType {
Color,
Gradient {
texture_transforms: wgpu::Buffer,
gradient: wgpu::Buffer,
bind_group: wgpu::BindGroup,
},
Bitmap {
texture_transforms: wgpu::Buffer,
texture_view: wgpu::TextureView,
is_smoothed: bool,
is_repeating: bool,
bind_group: wgpu::BindGroup,
},
}
impl WgpuRenderBackend<SwapChainTarget> {
#[cfg(target_family = "wasm")]
pub async fn for_canvas(canvas: &web_sys::HtmlCanvasElement) -> Result<Self, Error> {
let instance = wgpu::Instance::new(wgpu::Backends::BROWSER_WEBGPU);
let surface = instance.create_surface_from_canvas(canvas);
let descriptors = Self::build_descriptors(
wgpu::Backends::BROWSER_WEBGPU,
instance,
Some(&surface),
wgpu::PowerPreference::HighPerformance,
None,
)
.await?;
let target = SwapChainTarget::new(
surface,
descriptors.surface_format,
(1, 1),
&descriptors.device,
);
Self::new(descriptors, target)
}
#[cfg(not(target_family = "wasm"))]
pub fn for_window<W: raw_window_handle::HasRawWindowHandle>(
window: &W,
size: (u32, u32),
backend: wgpu::Backends,
power_preference: wgpu::PowerPreference,
trace_path: Option<&Path>,
) -> Result<Self, Error> {
if wgpu::Backends::SECONDARY.contains(backend) {
log::warn!(
"{} graphics backend support may not be fully supported.",
format_list(&get_backend_names(backend), "and")
);
}
let instance = wgpu::Instance::new(backend);
let surface = unsafe { instance.create_surface(window) };
let descriptors = futures::executor::block_on(Self::build_descriptors(
backend,
instance,
Some(&surface),
power_preference,
trace_path,
))?;
let target = SwapChainTarget::new(
surface,
descriptors.surface_format,
size,
&descriptors.device,
);
Self::new(descriptors, target)
}
}
#[cfg(not(target_family = "wasm"))]
impl WgpuRenderBackend<target::TextureTarget> {
pub fn for_offscreen(
size: (u32, u32),
backend: wgpu::Backends,
power_preference: wgpu::PowerPreference,
trace_path: Option<&Path>,
) -> Result<Self, Error> {
if wgpu::Backends::SECONDARY.contains(backend) {
log::warn!(
"{} graphics backend support may not be fully supported.",
format_list(&get_backend_names(backend), "and")
);
}
let instance = wgpu::Instance::new(backend);
let descriptors = futures::executor::block_on(Self::build_descriptors(
backend,
instance,
None,
power_preference,
trace_path,
))?;
let target = target::TextureTarget::new(&descriptors.device, size);
Self::new(descriptors, target)
}
pub fn capture_frame(&self) -> Option<image::RgbaImage> {
self.target.capture(&self.descriptors.device)
}
}
impl<T: RenderTarget> WgpuRenderBackend<T> {
pub fn new(mut descriptors: Descriptors, target: T) -> Result<Self, Error> {
let extent = wgpu::Extent3d {
width: target.width(),
height: target.height(),
depth_or_array_layers: 1,
};
let frame_buffer_view = if descriptors.msaa_sample_count > 1 {
let frame_buffer = descriptors.device.create_texture(&wgpu::TextureDescriptor {
label: create_debug_label!("Framebuffer texture").as_deref(),
size: extent,
mip_level_count: 1,
sample_count: descriptors.msaa_sample_count,
dimension: wgpu::TextureDimension::D2,
format: descriptors.frame_buffer_format,
usage: wgpu::TextureUsages::RENDER_ATTACHMENT,
});
Some(frame_buffer.create_view(&Default::default()))
} else {
None
};
let depth_texture = descriptors.device.create_texture(&wgpu::TextureDescriptor {
label: create_debug_label!("Depth texture").as_deref(),
size: extent,
mip_level_count: 1,
sample_count: descriptors.msaa_sample_count,
dimension: wgpu::TextureDimension::D2,
format: wgpu::TextureFormat::Depth24PlusStencil8,
usage: wgpu::TextureUsages::RENDER_ATTACHMENT,
});
let depth_texture_view = depth_texture.create_view(&Default::default());
let (quad_vbo, quad_ibo, quad_tex_transforms) = create_quad_buffers(&descriptors.device);
let (copy_srgb_view, copy_srgb_bind_group) = if descriptors.frame_buffer_format
!= descriptors.surface_format
{
let copy_srgb_buffer = descriptors.device.create_texture(&wgpu::TextureDescriptor {
label: create_debug_label!("Copy sRGB framebuffer texture").as_deref(),
size: extent,
mip_level_count: 1,
sample_count: 1,
dimension: wgpu::TextureDimension::D2,
format: descriptors.frame_buffer_format,
usage: wgpu::TextureUsages::RENDER_ATTACHMENT
| wgpu::TextureUsages::TEXTURE_BINDING,
});
let copy_srgb_view = copy_srgb_buffer.create_view(&Default::default());
let copy_srgb_bind_group =
descriptors
.device
.create_bind_group(&wgpu::BindGroupDescriptor {
layout: &descriptors.pipelines.bitmap_layout,
entries: &[
wgpu::BindGroupEntry {
binding: 0,
resource: wgpu::BindingResource::Buffer(wgpu::BufferBinding {
buffer: &quad_tex_transforms,
offset: 0,
size: wgpu::BufferSize::new(
std::mem::size_of::<TextureTransforms>() as u64,
),
}),
},
wgpu::BindGroupEntry {
binding: 1,
resource: wgpu::BindingResource::TextureView(&copy_srgb_view),
},
],
label: create_debug_label!("Copy sRGB bind group").as_deref(),
});
(Some(copy_srgb_view), Some(copy_srgb_bind_group))
} else {
(None, None)
};
descriptors
.globals
.set_resolution(target.width(), target.height());
Ok(Self {
descriptors,
target,
frame_buffer_view,
depth_texture_view,
copy_srgb_view,
copy_srgb_bind_group,
current_frame: None,
meshes: Vec::new(),
shape_tessellator: ShapeTessellator::new(),
num_masks: 0,
mask_state: MaskState::NoMask,
quad_vbo,
quad_ibo,
quad_tex_transforms,
bitmap_registry: Default::default(),
next_bitmap_handle: BitmapHandle(0),
})
}
pub async fn build_descriptors(
backend: wgpu::Backends,
instance: wgpu::Instance,
surface: Option<&wgpu::Surface>,
power_preference: wgpu::PowerPreference,
trace_path: Option<&Path>,
) -> Result<Descriptors, Error> {
let adapter = instance.request_adapter(&wgpu::RequestAdapterOptions {
power_preference,
compatible_surface: surface,
force_fallback_adapter: false,
}).await
.ok_or_else(|| {
let names = get_backend_names(backend);
if names.is_empty() {
"Ruffle requires hardware acceleration, but no compatible graphics device was found (no backend provided?)".to_string()
} else if cfg!(any(windows, target_os = "macos")) {
format!("Ruffle does not support OpenGL on {}.", if cfg!(windows) { "Windows" } else { "macOS" })
} else {
format!("Ruffle requires hardware acceleration, but no compatible graphics device was found supporting {}", format_list(&names, "or"))
}
})?;
let (device, queue) = adapter
.request_device(
&wgpu::DeviceDescriptor {
label: None,
features: wgpu::Features::empty(),
..Default::default()
},
trace_path,
)
.await?;
let info = adapter.get_info();
// Ideally we want to use an RGBA non-sRGB surface format, because Flash colors and
// blending are done in sRGB space -- we don't want the GPU to adjust the colors.
// Some platforms may only support an sRGB surface, in which case we will draw to an
// intermediate linear buffer and then copy to the sRGB surface.
let surface_format = surface
.and_then(|surface| {
let formats = surface.get_supported_formats(&adapter);
formats
.iter()
.find(|format| {
matches!(
format,
wgpu::TextureFormat::Rgba8Unorm | wgpu::TextureFormat::Bgra8Unorm
)
})
.or_else(|| formats.first())
.cloned()
})
// No surface (rendering to texture), default to linear RBGA.
.unwrap_or(wgpu::TextureFormat::Rgba8Unorm);
Descriptors::new(device, queue, info, surface_format)
}
pub fn descriptors(self) -> Descriptors {
self.descriptors
}
fn register_shape_internal(
&mut self,
shape: DistilledShape,
bitmap_source: &dyn BitmapSource,
) -> Mesh {
let shape_id = shape.id; // TODO: remove?
let lyon_mesh = self
.shape_tessellator
.tessellate_shape(shape, bitmap_source);
let mut draws = Vec::with_capacity(lyon_mesh.len());
for draw in lyon_mesh {
let vertices: Vec<_> = draw.vertices.into_iter().map(Vertex::from).collect();
let vertex_buffer = create_buffer_with_data(
&self.descriptors.device,
bytemuck::cast_slice(&vertices),
wgpu::BufferUsages::VERTEX,
create_debug_label!("Shape {} ({}) vbo", shape_id, draw.draw_type.name()),
);
let index_buffer = create_buffer_with_data(
&self.descriptors.device,
bytemuck::cast_slice(&draw.indices),
wgpu::BufferUsages::INDEX,
create_debug_label!("Shape {} ({}) ibo", shape_id, draw.draw_type.name()),
);
let index_count = draw.indices.len() as u32;
let draw_id = draws.len();
draws.push(match draw.draw_type {
TessDrawType::Color => Draw {
draw_type: DrawType::Color,
vertex_buffer,
index_buffer,
num_indices: index_count,
num_mask_indices: draw.mask_index_count,
},
TessDrawType::Gradient(gradient) => {
// TODO: Extract to function?
let mut texture_transform = [[0.0; 4]; 4];
texture_transform[0][..3].copy_from_slice(&gradient.matrix[0]);
texture_transform[1][..3].copy_from_slice(&gradient.matrix[1]);
texture_transform[2][..3].copy_from_slice(&gradient.matrix[2]);
let tex_transforms_ubo = create_buffer_with_data(
&self.descriptors.device,
bytemuck::cast_slice(&[texture_transform]),
wgpu::BufferUsages::UNIFORM,
create_debug_label!(
"Shape {} draw {} textransforms ubo transfer buffer",
shape_id,
draw_id
),
);
let gradient_ubo = create_buffer_with_data(
&self.descriptors.device,
bytemuck::cast_slice(&[GradientUniforms::from(gradient)]),
wgpu::BufferUsages::STORAGE,
create_debug_label!(
"Shape {} draw {} gradient ubo transfer buffer",
shape_id,
draw_id
),
);
let bind_group_label = create_debug_label!(
"Shape {} (gradient) draw {} bindgroup",
shape_id,
draw_id
);
let bind_group =
self.descriptors
.device
.create_bind_group(&wgpu::BindGroupDescriptor {
layout: &self.descriptors.pipelines.gradient_layout,
entries: &[
wgpu::BindGroupEntry {
binding: 0,
resource: wgpu::BindingResource::Buffer(
wgpu::BufferBinding {
buffer: &tex_transforms_ubo,
offset: 0,
size: wgpu::BufferSize::new(std::mem::size_of::<
TextureTransforms,
>(
)
as u64),
},
),
},
wgpu::BindGroupEntry {
binding: 1,
resource: wgpu::BindingResource::Buffer(
wgpu::BufferBinding {
buffer: &gradient_ubo,
offset: 0,
size: wgpu::BufferSize::new(std::mem::size_of::<
GradientUniforms,
>(
)
as u64),
},
),
},
],
label: bind_group_label.as_deref(),
});
Draw {
draw_type: DrawType::Gradient {
texture_transforms: tex_transforms_ubo,
gradient: gradient_ubo,
bind_group,
},
vertex_buffer,
index_buffer,
num_indices: index_count,
num_mask_indices: draw.mask_index_count,
}
}
TessDrawType::Bitmap(bitmap) => {
let entry = self.bitmap_registry.get(&bitmap.bitmap).unwrap();
let texture_view = entry
.texture_wrapper
.texture
.create_view(&Default::default());
// TODO: Extract to function?
let mut texture_transform = [[0.0; 4]; 4];
texture_transform[0][..3].copy_from_slice(&bitmap.matrix[0]);
texture_transform[1][..3].copy_from_slice(&bitmap.matrix[1]);
texture_transform[2][..3].copy_from_slice(&bitmap.matrix[2]);
let tex_transforms_ubo = create_buffer_with_data(
&self.descriptors.device,
bytemuck::cast_slice(&[texture_transform]),
wgpu::BufferUsages::UNIFORM,
create_debug_label!(
"Shape {} draw {} textransforms ubo transfer buffer",
shape_id,
draw_id
),
);
let bind_group_label = create_debug_label!(
"Shape {} (bitmap) draw {} bindgroup",
shape_id,
draw_id
);
let bind_group =
self.descriptors
.device
.create_bind_group(&wgpu::BindGroupDescriptor {
layout: &self.descriptors.pipelines.bitmap_layout,
entries: &[
wgpu::BindGroupEntry {
binding: 0,
resource: wgpu::BindingResource::Buffer(
wgpu::BufferBinding {
buffer: &tex_transforms_ubo,
offset: 0,
size: wgpu::BufferSize::new(std::mem::size_of::<
TextureTransforms,
>(
)
as u64),
},
),
},
wgpu::BindGroupEntry {
binding: 1,
resource: wgpu::BindingResource::TextureView(&texture_view),
},
],
label: bind_group_label.as_deref(),
});
Draw {
draw_type: DrawType::Bitmap {
texture_transforms: tex_transforms_ubo,
texture_view,
is_smoothed: bitmap.is_smoothed,
is_repeating: bitmap.is_repeating,
bind_group,
},
vertex_buffer,
index_buffer,
num_indices: index_count,
num_mask_indices: draw.mask_index_count,
}
}
});
}
Mesh { draws }
}
}
impl<T: RenderTarget + 'static> RenderBackend for WgpuRenderBackend<T> {
fn set_viewport_dimensions(&mut self, width: u32, height: u32) {
// Avoid panics from creating 0-sized framebuffers.
let width = std::cmp::max(width, 1);
let height = std::cmp::max(height, 1);
self.target.resize(&self.descriptors.device, width, height);
let size = wgpu::Extent3d {
width,
height,
depth_or_array_layers: 1,
};
self.frame_buffer_view = if self.descriptors.msaa_sample_count > 1 {
let frame_buffer = self
.descriptors
.device
.create_texture(&wgpu::TextureDescriptor {
label: create_debug_label!("Framebuffer texture").as_deref(),
size,
mip_level_count: 1,
sample_count: self.descriptors.msaa_sample_count,
dimension: wgpu::TextureDimension::D2,
format: self.descriptors.frame_buffer_format,
usage: wgpu::TextureUsages::RENDER_ATTACHMENT,
});
Some(frame_buffer.create_view(&Default::default()))
} else {
None
};
let depth_texture = self
.descriptors
.device
.create_texture(&wgpu::TextureDescriptor {
label: create_debug_label!("Depth texture").as_deref(),
size,
mip_level_count: 1,
sample_count: self.descriptors.msaa_sample_count,
dimension: wgpu::TextureDimension::D2,
format: wgpu::TextureFormat::Depth24PlusStencil8,
usage: wgpu::TextureUsages::RENDER_ATTACHMENT,
});
self.depth_texture_view = depth_texture.create_view(&Default::default());
(self.copy_srgb_view, self.copy_srgb_bind_group) = if self.descriptors.frame_buffer_format
!= self.descriptors.surface_format
{
let copy_srgb_buffer =
self.descriptors
.device
.create_texture(&wgpu::TextureDescriptor {
label: create_debug_label!("Copy sRGB framebuffer texture").as_deref(),
size,
mip_level_count: 1,
sample_count: 1,
dimension: wgpu::TextureDimension::D2,
format: self.descriptors.frame_buffer_format,
usage: wgpu::TextureUsages::RENDER_ATTACHMENT
| wgpu::TextureUsages::TEXTURE_BINDING,
});
let copy_srgb_view = copy_srgb_buffer.create_view(&Default::default());
let copy_srgb_bind_group =
self.descriptors
.device
.create_bind_group(&wgpu::BindGroupDescriptor {
layout: &self.descriptors.pipelines.bitmap_layout,
entries: &[
wgpu::BindGroupEntry {
binding: 0,
resource: wgpu::BindingResource::Buffer(wgpu::BufferBinding {
buffer: &self.quad_tex_transforms,
offset: 0,
size: wgpu::BufferSize::new(
std::mem::size_of::<TextureTransforms>() as u64,
),
}),
},
wgpu::BindGroupEntry {
binding: 1,
resource: wgpu::BindingResource::TextureView(&copy_srgb_view),
},
],
label: create_debug_label!("Copy sRGB bind group").as_deref(),
});
(Some(copy_srgb_view), Some(copy_srgb_bind_group))
} else {
(None, None)
};
self.descriptors.globals.set_resolution(width, height);
}
fn register_shape(
&mut self,
shape: DistilledShape,
bitmap_source: &dyn BitmapSource,
) -> ShapeHandle {
let handle = ShapeHandle(self.meshes.len());
let mesh = self.register_shape_internal(shape, bitmap_source);
self.meshes.push(mesh);
handle
}
fn replace_shape(
&mut self,
shape: DistilledShape,
bitmap_source: &dyn BitmapSource,
handle: ShapeHandle,
) {
let mesh = self.register_shape_internal(shape, bitmap_source);
self.meshes[handle.0] = mesh;
}
fn register_glyph_shape(&mut self, glyph: &swf::Glyph) -> ShapeHandle {
let shape = ruffle_core::shape_utils::swf_glyph_to_shape(glyph);
let handle = ShapeHandle(self.meshes.len());
let mesh = self.register_shape_internal(
(&shape).into(),
&ruffle_core::backend::render::NullBitmapSource,
);
self.meshes.push(mesh);
handle
}
fn begin_frame(&mut self, clear: Color) {
self.mask_state = MaskState::NoMask;
self.num_masks = 0;
self.descriptors.uniform_buffers.reset();
let frame_output = match self.target.get_next_texture() {
Ok(frame) => frame,
Err(e) => {
log::warn!("Couldn't begin new render frame: {}", e);
// Attemp to recreate the swap chain in this case.
self.target.resize(
&self.descriptors.device,
self.target.width(),
self.target.height(),
);
return;
}
};
let label = create_debug_label!("Draw encoder");
let draw_encoder =
self.descriptors
.device
.create_command_encoder(&wgpu::CommandEncoderDescriptor {
label: label.as_deref(),
});
let uniform_encoder_label = create_debug_label!("Uniform upload command encoder");
let uniform_encoder =
self.descriptors
.device
.create_command_encoder(&wgpu::CommandEncoderDescriptor {
label: uniform_encoder_label.as_deref(),
});
let mut frame_data = Box::new((draw_encoder, frame_output, uniform_encoder));
self.descriptors
.globals
.update_uniform(&self.descriptors.device, &mut frame_data.0);
// Use intermediate render targets when resolving MSAA or copying from linear-to-sRGB texture.
let (color_view, resolve_target) = match (&self.frame_buffer_view, &self.copy_srgb_view) {
(None, None) => (frame_data.1.view(), None),
(None, Some(copy)) => (copy, None),
(Some(frame_buffer), None) => (frame_buffer, Some(frame_data.1.view())),
(Some(frame_buffer), Some(copy)) => (frame_buffer, Some(copy)),
};
let render_pass = frame_data.0.begin_render_pass(&wgpu::RenderPassDescriptor {
color_attachments: &[Some(wgpu::RenderPassColorAttachment {
view: color_view,
ops: wgpu::Operations {
load: wgpu::LoadOp::Clear(wgpu::Color {
r: f64::from(clear.r) / 255.0,
g: f64::from(clear.g) / 255.0,
b: f64::from(clear.b) / 255.0,
a: f64::from(clear.a) / 255.0,
}),
store: true,
},
resolve_target,
})],
depth_stencil_attachment: Some(wgpu::RenderPassDepthStencilAttachment {
view: &self.depth_texture_view,
depth_ops: Some(wgpu::Operations {
load: wgpu::LoadOp::Clear(0.0),
store: false,
}),
stencil_ops: Some(wgpu::Operations {
load: wgpu::LoadOp::Clear(0),
store: true,
}),
}),
label: None,
});
// Since RenderPass holds a reference to the CommandEncoder, we cast the lifetime
// away to allow for the self-referencing struct. draw_encoder is boxed so its
// address should remain stable.
self.current_frame = Some(Frame {
render_pass: unsafe {
std::mem::transmute::<_, wgpu::RenderPass<'static>>(render_pass)
},
frame_data,
});
}
fn render_bitmap(&mut self, bitmap: BitmapHandle, transform: &Transform, smoothing: bool) {
if let Some(entry) = self.bitmap_registry.get(&bitmap) {
let texture = &entry.texture_wrapper;
let frame = if let Some(frame) = &mut self.current_frame {
frame.get()
} else {
return;
};
let transform = Transform {
matrix: transform.matrix
* ruffle_core::matrix::Matrix {
a: texture.width as f32,
d: texture.height as f32,
..Default::default()
},
..*transform
};
let world_matrix = [
[transform.matrix.a, transform.matrix.b, 0.0, 0.0],
[transform.matrix.c, transform.matrix.d, 0.0, 0.0],
[0.0, 0.0, 1.0, 0.0],
[
transform.matrix.tx.to_pixels() as f32,
transform.matrix.ty.to_pixels() as f32,
0.0,
1.0,
],
];
frame.render_pass.set_pipeline(
self.descriptors
.pipelines
.bitmap_pipelines
.pipeline_for(self.mask_state),
);
frame
.render_pass
.set_bind_group(0, self.descriptors.globals.bind_group(), &[]);
self.descriptors.uniform_buffers.write_uniforms(
&self.descriptors.device,
&mut frame.frame_data.2,
&mut frame.render_pass,
1,
&Transforms {
world_matrix,
color_adjustments: ColorAdjustments::from(transform.color_transform),
},
);
frame
.render_pass
.set_bind_group(2, &texture.bind_group, &[]);
frame.render_pass.set_bind_group(
3,
self.descriptors
.bitmap_samplers
.get_bind_group(false, smoothing),
&[],
);
frame
.render_pass
.set_vertex_buffer(0, self.quad_vbo.slice(..));
frame
.render_pass
.set_index_buffer(self.quad_ibo.slice(..), wgpu::IndexFormat::Uint32);
match self.mask_state {
MaskState::NoMask => (),
MaskState::DrawMaskStencil => {
debug_assert!(self.num_masks > 0);
frame.render_pass.set_stencil_reference(self.num_masks - 1);
}
MaskState::DrawMaskedContent | MaskState::ClearMaskStencil => {
debug_assert!(self.num_masks > 0);
frame.render_pass.set_stencil_reference(self.num_masks);
}
};
frame.render_pass.draw_indexed(0..6, 0, 0..1);
}
}
fn render_shape(&mut self, shape: ShapeHandle, transform: &Transform) {
let frame = if let Some(frame) = &mut self.current_frame {
frame.get()
} else {
return;
};
let mesh = &mut self.meshes[shape.0];
let world_matrix = [
[transform.matrix.a, transform.matrix.b, 0.0, 0.0],
[transform.matrix.c, transform.matrix.d, 0.0, 0.0],
[0.0, 0.0, 1.0, 0.0],
[
transform.matrix.tx.to_pixels() as f32,
transform.matrix.ty.to_pixels() as f32,
0.0,
1.0,
],
];
frame
.render_pass
.set_bind_group(0, self.descriptors.globals.bind_group(), &[]);
self.descriptors.uniform_buffers.write_uniforms(
&self.descriptors.device,
&mut frame.frame_data.2,
&mut frame.render_pass,
1,
&Transforms {
world_matrix,
color_adjustments: ColorAdjustments::from(transform.color_transform),
},
);
for draw in &mesh.draws {
let num_indices = if self.mask_state != MaskState::DrawMaskStencil
&& self.mask_state != MaskState::ClearMaskStencil
{
draw.num_indices
} else {
// Omit strokes when drawing a mask stencil.
draw.num_mask_indices
};
if num_indices == 0 {
continue;
}
match &draw.draw_type {
DrawType::Color => {
frame.render_pass.set_pipeline(
self.descriptors
.pipelines
.color_pipelines
.pipeline_for(self.mask_state),
);
}
DrawType::Gradient { bind_group, .. } => {
frame.render_pass.set_pipeline(
self.descriptors
.pipelines
.gradient_pipelines
.pipeline_for(self.mask_state),
);
frame.render_pass.set_bind_group(2, bind_group, &[]);
}
DrawType::Bitmap {
is_repeating,
is_smoothed,
bind_group,
..
} => {
frame.render_pass.set_pipeline(
self.descriptors
.pipelines
.bitmap_pipelines
.pipeline_for(self.mask_state),
);
frame.render_pass.set_bind_group(2, bind_group, &[]);
frame.render_pass.set_bind_group(
3,
self.descriptors
.bitmap_samplers
.get_bind_group(*is_repeating, *is_smoothed),
&[],
);
}
}
frame
.render_pass
.set_vertex_buffer(0, draw.vertex_buffer.slice(..));
frame
.render_pass
.set_index_buffer(draw.index_buffer.slice(..), wgpu::IndexFormat::Uint32);
match self.mask_state {
MaskState::NoMask => (),
MaskState::DrawMaskStencil => {
debug_assert!(self.num_masks > 0);
frame.render_pass.set_stencil_reference(self.num_masks - 1);
}
MaskState::DrawMaskedContent | MaskState::ClearMaskStencil => {
debug_assert!(self.num_masks > 0);
frame.render_pass.set_stencil_reference(self.num_masks);
}
};
frame.render_pass.draw_indexed(0..num_indices, 0, 0..1);
}
}
fn draw_rect(&mut self, color: Color, matrix: &ruffle_core::matrix::Matrix) {
let frame = if let Some(frame) = &mut self.current_frame {
frame.get()
} else {
return;
};
let world_matrix = [
[matrix.a, matrix.b, 0.0, 0.0],
[matrix.c, matrix.d, 0.0, 0.0],
[0.0, 0.0, 1.0, 0.0],
[
matrix.tx.to_pixels() as f32,
matrix.ty.to_pixels() as f32,
0.0,
1.0,
],
];
let mult_color = [
f32::from(color.r) / 255.0,
f32::from(color.g) / 255.0,
f32::from(color.b) / 255.0,
f32::from(color.a) / 255.0,
];
let add_color = [0.0, 0.0, 0.0, 0.0];
frame.render_pass.set_pipeline(
self.descriptors
.pipelines
.color_pipelines
.pipeline_for(self.mask_state),
);
frame
.render_pass
.set_bind_group(0, self.descriptors.globals.bind_group(), &[]);
self.descriptors.uniform_buffers.write_uniforms(
&self.descriptors.device,
&mut frame.frame_data.2,
&mut frame.render_pass,
1,
&Transforms {
world_matrix,
color_adjustments: ColorAdjustments {
mult_color,
add_color,
},
},
);
frame
.render_pass
.set_vertex_buffer(0, self.quad_vbo.slice(..));
frame
.render_pass
.set_index_buffer(self.quad_ibo.slice(..), wgpu::IndexFormat::Uint32);
match self.mask_state {
MaskState::NoMask => (),
MaskState::DrawMaskStencil => {
debug_assert!(self.num_masks > 0);
frame.render_pass.set_stencil_reference(self.num_masks - 1);
}
MaskState::DrawMaskedContent | MaskState::ClearMaskStencil => {
debug_assert!(self.num_masks > 0);
frame.render_pass.set_stencil_reference(self.num_masks);
}
};
frame.render_pass.draw_indexed(0..6, 0, 0..1);
}
fn end_frame(&mut self) {
if let Some(frame) = self.current_frame.take() {
let draw_encoder = frame.frame_data.0;
let mut uniform_encoder = frame.frame_data.2;
let render_pass = frame.render_pass;
// Finalize render pass.
drop(render_pass);
// If we have an sRGB surface, copy from our linear intermediate buffer to the sRGB surface.
let command_buffers = if let Some(copy_srgb_bind_group) = &self.copy_srgb_bind_group {
debug_assert!(self.copy_srgb_view.is_some());
let mut copy_encoder = self.descriptors.device.create_command_encoder(
&wgpu::CommandEncoderDescriptor {
label: create_debug_label!("Frame copy command encoder").as_deref(),
},
);
let mut render_pass = copy_encoder.begin_render_pass(&wgpu::RenderPassDescriptor {
color_attachments: &[Some(wgpu::RenderPassColorAttachment {
view: frame.frame_data.1.view(),
ops: wgpu::Operations {
load: wgpu::LoadOp::Clear(wgpu::Color::TRANSPARENT),
store: true,
},
resolve_target: None,
})],
depth_stencil_attachment: None,
label: None,
});
render_pass.set_pipeline(&self.descriptors.pipelines.copy_srgb_pipeline);
render_pass.set_bind_group(0, self.descriptors.globals.bind_group(), &[]);
self.descriptors.uniform_buffers.write_uniforms(
&self.descriptors.device,
&mut uniform_encoder,
&mut render_pass,
1,
&Transforms {
world_matrix: [
[self.target.width() as f32, 0.0, 0.0, 0.0],
[0.0, self.target.height() as f32, 0.0, 0.0],
[0.0, 0.0, 1.0, 0.0],
[0.0, 0.0, 0.0, 1.0],
],
color_adjustments: ColorAdjustments {
mult_color: [1.0, 1.0, 1.0, 1.0],
add_color: [0.0, 0.0, 0.0, 0.0],
},
},
);
render_pass.set_bind_group(2, copy_srgb_bind_group, &[]);
render_pass.set_bind_group(
3,
self.descriptors
.bitmap_samplers
.get_bind_group(false, false),
&[],
);
render_pass.set_vertex_buffer(0, self.quad_vbo.slice(..));
render_pass.set_index_buffer(self.quad_ibo.slice(..), wgpu::IndexFormat::Uint32);
render_pass.draw_indexed(0..6, 0, 0..1);
drop(render_pass);
vec![
uniform_encoder.finish(),
draw_encoder.finish(),
copy_encoder.finish(),
]
} else {
vec![uniform_encoder.finish(), draw_encoder.finish()]
};
self.descriptors.uniform_buffers.finish();
self.target.submit(
&self.descriptors.device,
&self.descriptors.queue,
command_buffers,
frame.frame_data.1,
);
}
}
fn push_mask(&mut self) {
debug_assert!(
self.mask_state == MaskState::NoMask || self.mask_state == MaskState::DrawMaskedContent
);
self.num_masks += 1;
self.mask_state = MaskState::DrawMaskStencil;
}
fn activate_mask(&mut self) {
debug_assert!(self.num_masks > 0 && self.mask_state == MaskState::DrawMaskStencil);
self.mask_state = MaskState::DrawMaskedContent;
}
fn deactivate_mask(&mut self) {
debug_assert!(self.num_masks > 0 && self.mask_state == MaskState::DrawMaskedContent);
self.mask_state = MaskState::ClearMaskStencil;
}
fn pop_mask(&mut self) {
debug_assert!(self.num_masks > 0 && self.mask_state == MaskState::ClearMaskStencil);
self.num_masks -= 1;
self.mask_state = if self.num_masks == 0 {
MaskState::NoMask
} else {
MaskState::DrawMaskedContent
};
}
fn get_bitmap_pixels(&mut self, bitmap: BitmapHandle) -> Option<Bitmap> {
self.bitmap_registry.get(&bitmap).map(|e| e.bitmap.clone())
}
fn register_bitmap(&mut self, bitmap: Bitmap) -> Result<BitmapHandle, Error> {
let bitmap = bitmap.to_rgba();
let extent = wgpu::Extent3d {
width: bitmap.width(),
height: bitmap.height(),
depth_or_array_layers: 1,
};
let texture_label = create_debug_label!("Bitmap");
let texture = self
.descriptors
.device
.create_texture(&wgpu::TextureDescriptor {
label: texture_label.as_deref(),
size: extent,
mip_level_count: 1,
sample_count: 1,
dimension: wgpu::TextureDimension::D2,
format: wgpu::TextureFormat::Rgba8Unorm,
usage: wgpu::TextureUsages::TEXTURE_BINDING | wgpu::TextureUsages::COPY_DST,
});
self.descriptors.queue.write_texture(
wgpu::ImageCopyTexture {
texture: &texture,
mip_level: 0,
origin: Default::default(),
aspect: wgpu::TextureAspect::All,
},
bitmap.data(),
wgpu::ImageDataLayout {
offset: 0,
bytes_per_row: NonZeroU32::new(4 * extent.width),
rows_per_image: None,
},
extent,
);
let handle = self.next_bitmap_handle;
self.next_bitmap_handle = BitmapHandle(self.next_bitmap_handle.0 + 1);
let width = bitmap.width();
let height = bitmap.height();
// Make bind group for bitmap quad.
let texture_view = texture.create_view(&Default::default());
let bind_group = self
.descriptors
.device
.create_bind_group(&wgpu::BindGroupDescriptor {
layout: &self.descriptors.pipelines.bitmap_layout,
entries: &[
wgpu::BindGroupEntry {
binding: 0,
resource: wgpu::BindingResource::Buffer(wgpu::BufferBinding {
buffer: &self.quad_tex_transforms,
offset: 0,
size: wgpu::BufferSize::new(
std::mem::size_of::<TextureTransforms>() as u64
),
}),
},
wgpu::BindGroupEntry {
binding: 1,
resource: wgpu::BindingResource::TextureView(&texture_view),
},
],
label: create_debug_label!("Bitmap {} bind group", handle.0).as_deref(),
});
self.bitmap_registry.insert(
handle,
RegistryData {
bitmap,
texture_wrapper: Texture {
width,
height,
texture,
bind_group,
},
},
);
Ok(handle)
}
fn unregister_bitmap(&mut self, handle: BitmapHandle) -> Result<(), Error> {
self.bitmap_registry.remove(&handle);
Ok(())
}
fn update_texture(
&mut self,
handle: BitmapHandle,
width: u32,
height: u32,
rgba: Vec<u8>,
) -> Result<BitmapHandle, Error> {
let texture = if let Some(entry) = self.bitmap_registry.get(&handle) {
&entry.texture_wrapper.texture
} else {
return Err("update_texture: Bitmap not registered".into());
};
let extent = wgpu::Extent3d {
width,
height,
depth_or_array_layers: 1,
};
self.descriptors.queue.write_texture(
wgpu::ImageCopyTexture {
texture,
mip_level: 0,
origin: Default::default(),
aspect: wgpu::TextureAspect::All,
},
&rgba,
wgpu::ImageDataLayout {
offset: 0,
bytes_per_row: NonZeroU32::new(4 * extent.width),
rows_per_image: None,
},
extent,
);
Ok(handle)
}
}
fn create_quad_buffers(device: &wgpu::Device) -> (wgpu::Buffer, wgpu::Buffer, wgpu::Buffer) {
let vertices = [
Vertex {
position: [0.0, 0.0],
color: [1.0, 1.0, 1.0, 1.0],
},
Vertex {
position: [1.0, 0.0],
color: [1.0, 1.0, 1.0, 1.0],
},
Vertex {
position: [1.0, 1.0],
color: [1.0, 1.0, 1.0, 1.0],
},
Vertex {
position: [0.0, 1.0],
color: [1.0, 1.0, 1.0, 1.0],
},
];
let indices: [u32; 6] = [0, 1, 2, 0, 2, 3];
let vbo = create_buffer_with_data(
device,
bytemuck::cast_slice(&vertices),
wgpu::BufferUsages::VERTEX,
create_debug_label!("Quad vbo"),
);
let ibo = create_buffer_with_data(
device,
bytemuck::cast_slice(&indices),
wgpu::BufferUsages::INDEX,
create_debug_label!("Quad ibo"),
);
let tex_transforms = create_buffer_with_data(
device,
bytemuck::cast_slice(&[TextureTransforms {
u_matrix: [
[1.0, 0.0, 0.0, 0.0],
[0.0, 1.0, 0.0, 0.0],
[0.0, 0.0, 1.0, 0.0],
[0.0, 0.0, 0.0, 1.0],
],
}]),
wgpu::BufferUsages::UNIFORM,
create_debug_label!("Quad tex transforms"),
);
(vbo, ibo, tex_transforms)
}
#[derive(Debug)]
struct Texture {
width: u32,
height: u32,
texture: wgpu::Texture,
bind_group: wgpu::BindGroup,
}