use crate::matrix::Matrix; use crate::shape_utils::DistilledShape; pub use crate::{library::MovieLibrary, transform::Transform, Color}; use downcast_rs::Downcast; use gc_arena::Collect; use std::borrow::Cow; use std::io::Read; pub use swf; pub trait RenderBackend: Downcast { fn set_viewport_dimensions(&mut self, width: u32, height: u32); fn register_shape( &mut self, shape: DistilledShape, bitmap_source: &dyn BitmapSource, ) -> ShapeHandle; fn replace_shape( &mut self, shape: DistilledShape, bitmap_source: &dyn BitmapSource, handle: ShapeHandle, ); fn register_glyph_shape(&mut self, shape: &swf::Glyph) -> ShapeHandle; fn register_bitmap_jpeg( &mut self, data: &[u8], jpeg_tables: Option<&[u8]>, ) -> Result { let data = glue_tables_to_jpeg(data, jpeg_tables); self.register_bitmap_jpeg_2(&data) } fn register_bitmap_jpeg_2(&mut self, data: &[u8]) -> Result { let bitmap = decode_define_bits_jpeg(data, None)?; let width = bitmap.width() as u16; let height = bitmap.height() as u16; let handle = self.register_bitmap(bitmap)?; Ok(BitmapInfo { handle, width, height, }) } fn register_bitmap_jpeg_3_or_4( &mut self, jpeg_data: &[u8], alpha_data: &[u8], ) -> Result { let bitmap = decode_define_bits_jpeg(jpeg_data, Some(alpha_data))?; let width = bitmap.width() as u16; let height = bitmap.height() as u16; let handle = self.register_bitmap(bitmap)?; Ok(BitmapInfo { handle, width, height, }) } fn register_bitmap_png( &mut self, swf_tag: &swf::DefineBitsLossless, ) -> Result { let bitmap = decode_define_bits_lossless(swf_tag)?; let width = bitmap.width() as u16; let height = bitmap.height() as u16; let handle = self.register_bitmap(bitmap)?; Ok(BitmapInfo { handle, width, height, }) } fn begin_frame(&mut self, clear: Color); fn render_bitmap(&mut self, bitmap: BitmapHandle, transform: &Transform, smoothing: bool); fn render_shape(&mut self, shape: ShapeHandle, transform: &Transform); fn draw_rect(&mut self, color: Color, matrix: &Matrix); fn end_frame(&mut self); fn push_mask(&mut self); fn activate_mask(&mut self); fn deactivate_mask(&mut self); fn pop_mask(&mut self); fn get_bitmap_pixels(&mut self, bitmap: BitmapHandle) -> Option; fn register_bitmap(&mut self, bitmap: Bitmap) -> Result; // Frees memory used by the bitmap. After this call, `handle` can no longer // be used. fn unregister_bitmap(&mut self, handle: BitmapHandle) -> Result<(), Error>; fn update_texture( &mut self, bitmap: BitmapHandle, width: u32, height: u32, rgba: Vec, ) -> Result; } impl_downcast!(RenderBackend); type Error = Box; #[derive(Copy, Clone, Debug)] pub struct ShapeHandle(pub usize); #[derive(Copy, Clone, Debug, Eq, PartialEq, Hash, Collect)] #[collect(no_drop)] pub struct BitmapHandle(pub usize); /// Info returned by the `register_bitmap` methods. #[derive(Copy, Clone, Debug)] pub struct BitmapInfo { pub handle: BitmapHandle, pub width: u16, pub height: u16, } /// An object that returns a bitmap given an ID. /// /// This is used by render backends to get the bitmap used in a bitmap fill. /// For movie libraries, this will return the bitmap with the given character ID. pub trait BitmapSource { fn bitmap(&self, id: u16) -> Option; } pub struct NullBitmapSource; impl BitmapSource for NullBitmapSource { fn bitmap(&self, _id: u16) -> Option { None } } pub struct NullRenderer; impl NullRenderer { pub fn new() -> Self { Self } } impl Default for NullRenderer { fn default() -> Self { Self::new() } } impl RenderBackend for NullRenderer { fn set_viewport_dimensions(&mut self, _width: u32, _height: u32) {} fn register_shape( &mut self, _shape: DistilledShape, _bitmap_source: &dyn BitmapSource, ) -> ShapeHandle { ShapeHandle(0) } fn replace_shape( &mut self, _shape: DistilledShape, _bitmap_source: &dyn BitmapSource, _handle: ShapeHandle, ) { } fn register_glyph_shape(&mut self, _shape: &swf::Glyph) -> ShapeHandle { ShapeHandle(0) } fn begin_frame(&mut self, _clear: Color) {} fn end_frame(&mut self) {} fn render_bitmap(&mut self, _bitmap: BitmapHandle, _transform: &Transform, _smoothing: bool) {} fn render_shape(&mut self, _shape: ShapeHandle, _transform: &Transform) {} fn draw_rect(&mut self, _color: Color, _matrix: &Matrix) {} fn push_mask(&mut self) {} fn activate_mask(&mut self) {} fn deactivate_mask(&mut self) {} fn pop_mask(&mut self) {} fn get_bitmap_pixels(&mut self, _bitmap: BitmapHandle) -> Option { None } fn register_bitmap(&mut self, _bitmap: Bitmap) -> Result { Ok(BitmapHandle(0)) } fn unregister_bitmap(&mut self, _bitmap: BitmapHandle) -> Result<(), Error> { Ok(()) } fn update_texture( &mut self, _bitmap: BitmapHandle, _width: u32, _height: u32, _rgba: Vec, ) -> Result { Ok(BitmapHandle(0)) } } /// The format of image data in a DefineBitsJpeg2/3 tag. /// Generally this will be JPEG, but according to SWF19, these tags can also contain PNG and GIF data. /// SWF19 pp.138-139 #[derive(Debug, Copy, Clone, PartialEq, Eq)] pub enum JpegTagFormat { Jpeg, Png, Gif, Unknown, } /// Decoded bitmap data from an SWF tag. #[derive(Clone, Debug)] pub struct Bitmap { width: u32, height: u32, format: BitmapFormat, data: Vec, } impl Bitmap { /// Ensures that `data` is the correct size for the given `width` and `height`. pub fn new(width: u32, height: u32, format: BitmapFormat, mut data: Vec) -> Self { // If the size is incorrect, either we screwed up or the decoder screwed up. let expected_len = width as usize * height as usize * format.bytes_per_pixel(); debug_assert_eq!(data.len(), expected_len); if data.len() != expected_len { log::warn!( "Incorrect bitmap data size, expected {} bytes, got {}", data.len(), expected_len ); // Truncate or zero pad to the expected size. data.resize(expected_len, 0); } Self { width, height, format, data, } } pub fn to_rgba(mut self) -> Self { // Converts this bitmap to RGBA, if it is not already. if self.format == BitmapFormat::Rgb { self.data = self .data .chunks_exact(3) .flat_map(|rgb| [rgb[0], rgb[1], rgb[2], 255]) .collect(); self.format = BitmapFormat::Rgba; } self } #[inline] pub fn width(&self) -> u32 { self.width } #[inline] pub fn height(&self) -> u32 { self.height } #[inline] pub fn format(&self) -> BitmapFormat { self.format } #[inline] pub fn data(&self) -> &[u8] { &self.data } #[inline] pub fn data_mut(&mut self) -> &mut [u8] { &mut self.data } } impl From for Vec { fn from(bitmap: Bitmap) -> Self { match bitmap.format { BitmapFormat::Rgb => bitmap .data .chunks_exact(3) .map(|chunk| { let red = chunk[0]; let green = chunk[1]; let blue = chunk[2]; i32::from_le_bytes([blue, green, red, 0xFF]) }) .collect(), BitmapFormat::Rgba => bitmap .data .chunks_exact(4) .map(|chunk| { let red = chunk[0]; let green = chunk[1]; let blue = chunk[2]; let alpha = chunk[3]; i32::from_le_bytes([blue, green, red, alpha]) }) .collect(), } } } /// The pixel format of the bitmap data. #[derive(Clone, Copy, Debug, Eq, PartialEq)] pub enum BitmapFormat { /// 24-bit RGB. Rgb, /// 32-bit RGBA with premultiplied alpha. Rgba, } impl BitmapFormat { #[inline] pub fn bytes_per_pixel(self) -> usize { match self { BitmapFormat::Rgb => 3, BitmapFormat::Rgba => 4, } } } /// Determines the format of the image data in `data` from a DefineBitsJPEG2/3 tag. pub fn determine_jpeg_tag_format(data: &[u8]) -> JpegTagFormat { match data { [0xff, 0xd8, ..] => JpegTagFormat::Jpeg, [0xff, 0xd9, 0xff, 0xd8, ..] => JpegTagFormat::Jpeg, // erroneous header in SWF [0x89, 0x50, 0x4e, 0x47, 0x0d, 0x0a, 0x1a, 0x0a, ..] => JpegTagFormat::Png, [0x47, 0x49, 0x46, 0x38, 0x39, 0x61, ..] => JpegTagFormat::Gif, _ => JpegTagFormat::Unknown, } } /// Decodes bitmap data from a DefineBitsJPEG2/3 tag. /// The data is returned with pre-multiplied alpha. fn decode_define_bits_jpeg(data: &[u8], alpha_data: Option<&[u8]>) -> Result { let format = determine_jpeg_tag_format(data); if format != JpegTagFormat::Jpeg && alpha_data.is_some() { // Only DefineBitsJPEG3 with true JPEG data should have separate alpha data. log::warn!("DefineBitsJPEG contains non-JPEG data with alpha; probably incorrect") } match format { JpegTagFormat::Jpeg => decode_jpeg(data, alpha_data), JpegTagFormat::Png => decode_png(data), JpegTagFormat::Gif => decode_gif(data), JpegTagFormat::Unknown => Err("Unknown bitmap data format".into()), } } /// Glues the JPEG encoding tables from a JPEGTables SWF tag to the JPEG data /// in a DefineBits tag, producing complete JPEG data suitable for a decoder. fn glue_tables_to_jpeg<'a>(jpeg_data: &'a [u8], jpeg_tables: Option<&'a [u8]>) -> Cow<'a, [u8]> { if let Some(jpeg_tables) = jpeg_tables { if jpeg_tables.len() >= 2 { let mut full_jpeg = Vec::with_capacity(jpeg_tables.len() + jpeg_data.len()); full_jpeg.extend_from_slice(&jpeg_tables[..jpeg_tables.len() - 2]); if jpeg_data.len() >= 2 { full_jpeg.extend_from_slice(&jpeg_data[2..]); } return full_jpeg.into(); } } // No JPEG tables or not enough data; return JPEG data as is jpeg_data.into() } /// Removes potential invalid JPEG data from SWF DefineBitsJPEG tags. /// /// SWF19 p.138: /// "Before version 8 of the SWF file format, SWF files could contain an erroneous header of 0xFF, 0xD9, 0xFF, 0xD8 before the JPEG SOI marker." /// These bytes need to be removed for the JPEG to decode properly. pub fn remove_invalid_jpeg_data(mut data: &[u8]) -> Cow<[u8]> { // TODO: Might be better to return an Box> instead of a Cow here, // where the spliced iter is a data[..n].chain(data[n+4..])? if data.starts_with(&[0xFF, 0xD9, 0xFF, 0xD8]) { data = &data[4..]; } if let Some(pos) = data.windows(4).position(|w| w == [0xFF, 0xD9, 0xFF, 0xD8]) { let mut out_data = Vec::with_capacity(data.len() - 4); out_data.extend_from_slice(&data[..pos]); out_data.extend_from_slice(&data[pos + 4..]); out_data.into() } else { data.into() } } /// Decodes a JPEG with optional alpha data. /// The decoded bitmap will have pre-multiplied alpha. fn decode_jpeg( jpeg_data: &[u8], alpha_data: Option<&[u8]>, ) -> Result> { let jpeg_data = remove_invalid_jpeg_data(jpeg_data); let mut decoder = jpeg_decoder::Decoder::new(&jpeg_data[..]); decoder.read_info()?; let metadata = decoder.info().ok_or("Unable to get image info")?; let decoded_data = decoder.decode()?; let decoded_data = match metadata.pixel_format { jpeg_decoder::PixelFormat::RGB24 => decoded_data, jpeg_decoder::PixelFormat::CMYK32 => decoded_data .chunks_exact(4) .flat_map(|cmyk| { let c = 255 - u16::from(cmyk[0]); let m = 255 - u16::from(cmyk[1]); let y = 255 - u16::from(cmyk[2]); let k = 256 - u16::from(cmyk[3]); let r = c * k / 255; let g = m * k / 255; let b = y * k / 255; [r as u8, g as u8, b as u8] }) .collect(), jpeg_decoder::PixelFormat::L8 => { let mut rgb = Vec::with_capacity(decoded_data.len() * 3); for elem in decoded_data { rgb.push(elem); rgb.push(elem); rgb.push(elem); } rgb } jpeg_decoder::PixelFormat::L16 => { log::warn!("Unimplemented L16 JPEG pixel format"); decoded_data } }; // Decompress the alpha data (DEFLATE compression). if let Some(alpha_data) = alpha_data { let alpha_data = decompress_zlib(alpha_data)?; if alpha_data.len() == decoded_data.len() / 3 { let mut rgba = Vec::with_capacity((decoded_data.len() / 3) * 4); let mut i = 0; let mut a = 0; while i < decoded_data.len() { // The JPEG data should be premultiplied alpha, but it isn't in some incorrect SWFs (see #6893). // This means 0% alpha pixels may have color and incorrectly show as visible. // Flash Player clamps color to the alpha value to fix this case. // Only applies to DefineBitsJPEG3; DefineBitsLossless does not seem to clamp. let alpha = alpha_data[a]; rgba.push(decoded_data[i].min(alpha)); rgba.push(decoded_data[i + 1].min(alpha)); rgba.push(decoded_data[i + 2].min(alpha)); rgba.push(alpha); i += 3; a += 1; } return Ok(Bitmap::new( metadata.width.into(), metadata.height.into(), BitmapFormat::Rgba, rgba, )); } else { // Size isn't correct; fallback to RGB? log::error!("Size mismatch in DefineBitsJPEG3 alpha data"); } } // No alpha. Ok(Bitmap::new( metadata.width.into(), metadata.height.into(), BitmapFormat::Rgb, decoded_data, )) } /// Decodes the bitmap data in DefineBitsLossless tag into RGBA. /// DefineBitsLossless is Zlib encoded pixel data (similar to PNG), possibly /// palletized. fn decode_define_bits_lossless( swf_tag: &swf::DefineBitsLossless, ) -> Result> { // Decompress the image data (DEFLATE compression). let mut decoded_data = decompress_zlib(swf_tag.data)?; // Swizzle/de-palettize the bitmap. let out_data = match (swf_tag.version, swf_tag.format) { (1, swf::BitmapFormat::Rgb15) => { let padded_width = (swf_tag.width + 0b1) & !0b1; let mut out_data: Vec = Vec::with_capacity(swf_tag.width as usize * swf_tag.height as usize * 4); let mut i = 0; for _ in 0..swf_tag.height { for _ in 0..swf_tag.width { let compressed = u16::from_be_bytes([decoded_data[i], decoded_data[i + 1]]); let rgb5_component = |shift: u16| { let component = compressed >> shift & 0x1F; ((component * 255 + 15) / 31) as u8 }; out_data.push(rgb5_component(10)); out_data.push(rgb5_component(5)); out_data.push(rgb5_component(0)); out_data.push(0xff); i += 2; } i += (padded_width - swf_tag.width) as usize * 2; } out_data } (1, swf::BitmapFormat::Rgb32) => { let mut i = 0; while i < decoded_data.len() { decoded_data[i] = decoded_data[i + 1]; decoded_data[i + 1] = decoded_data[i + 2]; decoded_data[i + 2] = decoded_data[i + 3]; decoded_data[i + 3] = 0xff; i += 4; } decoded_data } (2, swf::BitmapFormat::Rgb32) => { let mut i = 0; while i < decoded_data.len() { let alpha = decoded_data[i]; decoded_data[i] = decoded_data[i + 1]; decoded_data[i + 1] = decoded_data[i + 2]; decoded_data[i + 2] = decoded_data[i + 3]; decoded_data[i + 3] = alpha; i += 4; } decoded_data } (1, swf::BitmapFormat::ColorMap8 { num_colors }) => { let mut i = 0; let padded_width = (swf_tag.width + 0b11) & !0b11; let mut palette = Vec::with_capacity(num_colors as usize + 1); for _ in 0..=num_colors { palette.push(Color { r: decoded_data[i], g: decoded_data[i + 1], b: decoded_data[i + 2], a: 255, }); i += 3; } let mut out_data: Vec = Vec::with_capacity(swf_tag.width as usize * swf_tag.height as usize * 4); for _ in 0..swf_tag.height { for _ in 0..swf_tag.width { let entry = decoded_data[i] as usize; if entry < palette.len() { let color = &palette[entry]; out_data.push(color.r); out_data.push(color.g); out_data.push(color.b); out_data.push(color.a); } else { out_data.push(0); out_data.push(0); out_data.push(0); out_data.push(255); } i += 1; } i += (padded_width - swf_tag.width) as usize; } out_data } (2, swf::BitmapFormat::ColorMap8 { num_colors }) => { let mut i = 0; let padded_width = (swf_tag.width + 0b11) & !0b11; let mut palette = Vec::with_capacity(num_colors as usize + 1); for _ in 0..=num_colors { palette.push(Color { r: decoded_data[i], g: decoded_data[i + 1], b: decoded_data[i + 2], a: decoded_data[i + 3], }); i += 4; } let mut out_data: Vec = Vec::with_capacity(swf_tag.width as usize * swf_tag.height as usize * 4); for _ in 0..swf_tag.height { for _ in 0..swf_tag.width { let entry = decoded_data[i] as usize; if entry < palette.len() { let color = &palette[entry]; out_data.push(color.r); out_data.push(color.g); out_data.push(color.b); out_data.push(color.a); } else { out_data.push(0); out_data.push(0); out_data.push(0); out_data.push(0); } i += 1; } i += (padded_width - swf_tag.width) as usize; } out_data } _ => { return Err(format!( "Unexpected DefineBitsLossless{} format: {:?} ", swf_tag.version, swf_tag.format, ) .into()); } }; Ok(Bitmap::new( swf_tag.width.into(), swf_tag.height.into(), BitmapFormat::Rgba, out_data, )) } /// Decodes the bitmap data in DefineBitsLossless tag into RGBA. /// DefineBitsLossless is Zlib encoded pixel data (similar to PNG), possibly /// palletized. fn decode_png(data: &[u8]) -> Result { use png::{ColorType, Transformations}; let mut decoder = png::Decoder::new(data); // Normalize output to 8-bit grayscale or RGB. // Ideally we'd want to normalize to 8-bit RGB only, but seems like the `png` crate provides no such a feature. decoder.set_transformations(Transformations::normalize_to_color8()); let mut reader = decoder.read_info()?; let mut data = vec![0; reader.output_buffer_size()]; let info = reader.next_frame(&mut data)?; let (format, data) = match info.color_type { ColorType::Rgb => (BitmapFormat::Rgb, data), ColorType::Rgba => { // In contrast to DefineBitsLossless tags, PNGs embedded in a DefineBitsJPEG tag will not have // premultiplied alpha and need to be converted before sending to the renderer. premultiply_alpha_rgba(&mut data); (BitmapFormat::Rgba, data) } ColorType::Grayscale => ( BitmapFormat::Rgb, data.into_iter().flat_map(|v| [v, v, v]).collect(), ), ColorType::GrayscaleAlpha => { ( BitmapFormat::Rgba, data.chunks_exact(2) .flat_map(|pixel| { // Pre-multiply alpha. let a = pixel[1]; let v = (u16::from(pixel[0]) * u16::from(a) / 255) as u8; [v, v, v, a] }) .collect(), ) } ColorType::Indexed => { // Shouldn't get here because of `normalize_to_color8` transformation above. unreachable!("Unexpected PNG ColorType::Indexed"); } }; Ok(Bitmap::new(info.width, info.height, format, data)) } /// Decodes the bitmap data in DefineBitsLossless tag into RGBA. /// DefineBitsLossless is Zlib encoded pixel data (similar to PNG), possibly /// palletized. fn decode_gif(data: &[u8]) -> Result { let mut decode_options = gif::DecodeOptions::new(); decode_options.set_color_output(gif::ColorOutput::RGBA); let mut reader = decode_options.read_info(data)?; let frame = reader.read_next_frame()?.ok_or("No frames in GIF")?; // GIFs embedded in a DefineBitsJPEG tag will not have premultiplied alpha and need to be converted before sending to the renderer. let mut data = frame.buffer.to_vec(); premultiply_alpha_rgba(&mut data); Ok(Bitmap::new( frame.width.into(), frame.height.into(), BitmapFormat::Rgba, data, )) } /// Converts standard RBGA to premultiplied alpha. fn premultiply_alpha_rgba(rgba: &mut [u8]) { rgba.chunks_exact_mut(4).for_each(|rgba| { let a = f32::from(rgba[3]) / 255.0; rgba[0] = (f32::from(rgba[0]) * a) as u8; rgba[1] = (f32::from(rgba[1]) * a) as u8; rgba[2] = (f32::from(rgba[2]) * a) as u8; }) } /// Decodes zlib-compressed data. fn decompress_zlib(data: &[u8]) -> Result, std::io::Error> { let mut out_data = Vec::new(); let mut decoder = flate2::bufread::ZlibDecoder::new(data); decoder.read_to_end(&mut out_data)?; out_data.shrink_to_fit(); Ok(out_data) }