use lyon::tessellation::{ self, geometry_builder::{BuffersBuilder, FillVertexConstructor, VertexBuffers}, FillAttributes, FillTessellator, StrokeAttributes, StrokeTessellator, StrokeVertexConstructor, }; use ruffle_core::backend::render::swf::{self, FillStyle}; use ruffle_core::backend::render::{ srgb_to_linear, Bitmap, BitmapFormat, BitmapHandle, BitmapInfo, Color, Letterbox, RenderBackend, ShapeHandle, Transform, }; use ruffle_core::shape_utils::{DistilledShape, DrawPath}; use std::convert::TryInto; use swf::{CharacterId, DefineBitsLossless, Glyph, GradientInterpolation}; use bytemuck::{Pod, Zeroable}; use futures::executor::block_on; use raw_window_handle::HasRawWindowHandle; use crate::pipelines::Pipelines; use crate::shapes::{Draw, DrawType, GradientUniforms, IncompleteDrawType, Mesh}; use crate::target::{RenderTarget, RenderTargetFrame, SwapChainTarget}; use crate::utils::{ build_view_matrix, create_buffer_with_data, format_list, get_backend_names, gradient_spread_mode_index, ruffle_path_to_lyon_path, swf_bitmap_to_gl_matrix, swf_to_gl_matrix, }; use ruffle_core::color_transform::ColorTransform; use std::mem::replace; use std::rc::Rc; type Error = Box; #[macro_use] mod utils; mod pipelines; mod shapes; pub mod target; #[cfg(feature = "clap")] pub mod clap; use ruffle_core::swf::{Matrix, Twips}; pub use wgpu; pub struct WgpuRenderBackend { device: Rc, queue: Rc, target: T, msaa_sample_count: u32, pipelines: Pipelines, frame_buffer_view: wgpu::TextureView, depth_texture_view: wgpu::TextureView, current_frame: Option<(T::Frame, wgpu::CommandEncoder)>, register_encoder: wgpu::CommandEncoder, meshes: Vec, viewport_width: f32, viewport_height: f32, view_matrix: [[f32; 4]; 4], textures: Vec<(swf::CharacterId, Texture)>, num_masks: u32, num_masks_active: u32, write_stencil_mask: u32, test_stencil_mask: u32, next_stencil_mask: u32, mask_stack: Vec<(u32, u32)>, quad_vbo: wgpu::Buffer, quad_ibo: wgpu::Buffer, quad_tex_transforms: wgpu::Buffer, } #[repr(C)] #[derive(Copy, Clone, Debug)] struct Transforms { view_matrix: [[f32; 4]; 4], world_matrix: [[f32; 4]; 4], } unsafe impl Pod for Transforms {} unsafe impl Zeroable for Transforms {} #[repr(C)] #[derive(Copy, Clone, Debug)] struct TextureTransforms { u_matrix: [[f32; 4]; 4], } unsafe impl Pod for TextureTransforms {} unsafe impl Zeroable for TextureTransforms {} #[repr(C)] #[derive(Copy, Clone, Debug)] struct ColorAdjustments { mult_color: [f32; 4], add_color: [f32; 4], } impl From for ColorAdjustments { fn from(transform: ColorTransform) -> Self { Self { mult_color: [ transform.r_mult, transform.g_mult, transform.b_mult, transform.a_mult, ], add_color: [ transform.r_add, transform.g_add, transform.b_add, transform.a_add, ], } } } unsafe impl Pod for ColorAdjustments {} unsafe impl Zeroable for ColorAdjustments {} #[repr(C)] #[derive(Copy, Clone, Debug)] struct GPUVertex { position: [f32; 2], color: [f32; 4], } unsafe impl Pod for GPUVertex {} unsafe impl Zeroable for GPUVertex {} impl WgpuRenderBackend { pub fn for_window( window: &W, size: (u32, u32), backend: wgpu::BackendBit, power_preference: wgpu::PowerPreference, ) -> Result { if wgpu::BackendBit::SECONDARY.contains(backend) { log::warn!( "{} graphics backend support may not be fully supported.", format_list(&get_backend_names(backend), "and") ); } let instance = wgpu::Instance::new(backend); let surface = unsafe { instance.create_surface(window) }; let adapter = block_on(instance.request_adapter(&wgpu::RequestAdapterOptions { power_preference, compatible_surface: Some(&surface), })) .ok_or_else(|| { let names = get_backend_names(backend); if names.is_empty() { "Ruffle requires hardware acceleration, but no compatible graphics device was found (no backend provided?)".to_string() } else { format!("Ruffle requires hardware acceleration, but no compatible graphics device was found supporting {}", format_list(&names, "or")) } })?; let (device, queue) = block_on(adapter.request_device( &wgpu::DeviceDescriptor { features: Default::default(), limits: wgpu::Limits::default(), shader_validation: false, }, None, ))?; let target = SwapChainTarget::new(surface, size, &device); Self::new(Rc::new(device), Rc::new(queue), target) } } impl WgpuRenderBackend { pub fn new(device: Rc, queue: Rc, target: T) -> Result { // TODO: Allow this to be set from command line/settings file. let msaa_sample_count = 4; let pipelines = Pipelines::new(&device, msaa_sample_count)?; let extent = wgpu::Extent3d { width: target.width(), height: target.height(), depth: 1, }; let frame_buffer_label = create_debug_label!("Framebuffer texture"); let frame_buffer = device.create_texture(&wgpu::TextureDescriptor { label: frame_buffer_label.as_deref(), size: extent, mip_level_count: 1, sample_count: msaa_sample_count, dimension: wgpu::TextureDimension::D2, format: target.format(), usage: wgpu::TextureUsage::OUTPUT_ATTACHMENT, }); let frame_buffer_view = frame_buffer.create_view(&Default::default()); let depth_label = create_debug_label!("Depth texture"); let depth_texture = device.create_texture(&wgpu::TextureDescriptor { label: depth_label.as_deref(), size: extent, mip_level_count: 1, sample_count: msaa_sample_count, dimension: wgpu::TextureDimension::D2, format: wgpu::TextureFormat::Depth24PlusStencil8, usage: wgpu::TextureUsage::OUTPUT_ATTACHMENT, }); let register_encoder_label = create_debug_label!("Register encoder"); let register_encoder = device.create_command_encoder(&wgpu::CommandEncoderDescriptor { label: register_encoder_label.as_deref(), }); let depth_texture_view = depth_texture.create_view(&Default::default()); let (quad_vbo, quad_ibo, quad_tex_transforms) = create_quad_buffers(&device); let viewport_width = target.width() as f32; let viewport_height = target.height() as f32; let view_matrix = build_view_matrix(target.width(), target.height()); Ok(Self { device, queue, target, msaa_sample_count, pipelines, frame_buffer_view, depth_texture_view, current_frame: None, register_encoder, meshes: Vec::new(), viewport_width, viewport_height, view_matrix, textures: Vec::new(), num_masks: 0, num_masks_active: 0, write_stencil_mask: 0, test_stencil_mask: 0, next_stencil_mask: 1, mask_stack: Vec::new(), quad_vbo, quad_ibo, quad_tex_transforms, }) } #[allow(clippy::cognitive_complexity)] fn register_shape_internal(&mut self, shape: DistilledShape) -> Mesh { use lyon::tessellation::{FillOptions, StrokeOptions}; let transforms_label = create_debug_label!("Shape {} transforms ubo", shape.id); let transforms_ubo = self.device.create_buffer(&wgpu::BufferDescriptor { label: transforms_label.as_deref(), size: std::mem::size_of::() as u64, usage: wgpu::BufferUsage::UNIFORM | wgpu::BufferUsage::COPY_DST, mapped_at_creation: false, }); let colors_ubo = create_buffer_with_data( &self.device, bytemuck::cast_slice(&[ColorAdjustments { mult_color: [1.0, 1.0, 1.0, 1.0], add_color: [0.0, 0.0, 0.0, 0.0], }]), wgpu::BufferUsage::UNIFORM | wgpu::BufferUsage::COPY_DST, create_debug_label!("Shape {} colors ubo", shape.id), ); let mut draws = Vec::new(); let mut fill_tess = FillTessellator::new(); let mut stroke_tess = StrokeTessellator::new(); let mut lyon_mesh: VertexBuffers<_, u16> = VertexBuffers::new(); #[allow(clippy::too_many_arguments)] fn flush_draw( shape_id: CharacterId, draw: IncompleteDrawType, draws: &mut Vec, lyon_mesh: &mut VertexBuffers, device: &wgpu::Device, transforms_ubo: &wgpu::Buffer, colors_ubo: &wgpu::Buffer, pipelines: &Pipelines, ) { if lyon_mesh.vertices.is_empty() || lyon_mesh.indices.len() < 3 { return; } let vbo = create_buffer_with_data( device, bytemuck::cast_slice(&lyon_mesh.vertices), wgpu::BufferUsage::VERTEX, create_debug_label!("Shape {} ({}) vbo", shape_id, draw.name()), ); let ibo = create_buffer_with_data( device, bytemuck::cast_slice(&lyon_mesh.indices), wgpu::BufferUsage::INDEX, create_debug_label!("Shape {} ({}) ibo", shape_id, draw.name()), ); let draw_id = draws.len(); draws.push(draw.build( device, transforms_ubo, colors_ubo, vbo, ibo, lyon_mesh.indices.len() as u32, pipelines, shape_id, draw_id, )); *lyon_mesh = VertexBuffers::new(); } for path in shape.paths { match path { DrawPath::Fill { style, commands } => match style { FillStyle::Color(color) => { let color = [ f32::from(color.r) / 255.0, f32::from(color.g) / 255.0, f32::from(color.b) / 255.0, f32::from(color.a) / 255.0, ]; let mut buffers_builder = BuffersBuilder::new(&mut lyon_mesh, RuffleVertexCtor { color }); if let Err(e) = fill_tess.tessellate_path( &ruffle_path_to_lyon_path(commands, true), &FillOptions::even_odd(), &mut buffers_builder, ) { // This may just be a degenerate path; skip it. log::error!("Tessellation failure: {:?}", e); continue; } } FillStyle::LinearGradient(gradient) => { flush_draw( shape.id, IncompleteDrawType::Color, &mut draws, &mut lyon_mesh, &self.device, &transforms_ubo, &colors_ubo, &self.pipelines, ); let mut buffers_builder = BuffersBuilder::new( &mut lyon_mesh, RuffleVertexCtor { color: [1.0, 1.0, 1.0, 1.0], }, ); if let Err(e) = fill_tess.tessellate_path( &ruffle_path_to_lyon_path(commands, true), &FillOptions::even_odd(), &mut buffers_builder, ) { // This may just be a degenerate path; skip it. log::error!("Tessellation failure: {:?}", e); continue; } let uniforms = swf_gradient_to_uniforms(0, gradient, 0.0); let matrix = swf_to_gl_matrix(gradient.matrix); flush_draw( shape.id, IncompleteDrawType::Gradient { texture_transform: matrix, gradient: uniforms, }, &mut draws, &mut lyon_mesh, &self.device, &transforms_ubo, &colors_ubo, &self.pipelines, ); } FillStyle::RadialGradient(gradient) => { flush_draw( shape.id, IncompleteDrawType::Color, &mut draws, &mut lyon_mesh, &self.device, &transforms_ubo, &colors_ubo, &self.pipelines, ); let mut buffers_builder = BuffersBuilder::new( &mut lyon_mesh, RuffleVertexCtor { color: [1.0, 1.0, 1.0, 1.0], }, ); if let Err(e) = fill_tess.tessellate_path( &ruffle_path_to_lyon_path(commands, true), &FillOptions::even_odd(), &mut buffers_builder, ) { // This may just be a degenerate path; skip it. log::error!("Tessellation failure: {:?}", e); continue; } let uniforms = swf_gradient_to_uniforms(1, gradient, 0.0); let matrix = swf_to_gl_matrix(gradient.matrix); flush_draw( shape.id, IncompleteDrawType::Gradient { texture_transform: matrix, gradient: uniforms, }, &mut draws, &mut lyon_mesh, &self.device, &transforms_ubo, &colors_ubo, &self.pipelines, ); } FillStyle::FocalGradient { gradient, focal_point, } => { flush_draw( shape.id, IncompleteDrawType::Color, &mut draws, &mut lyon_mesh, &self.device, &transforms_ubo, &colors_ubo, &self.pipelines, ); let mut buffers_builder = BuffersBuilder::new( &mut lyon_mesh, RuffleVertexCtor { color: [1.0, 1.0, 1.0, 1.0], }, ); if let Err(e) = fill_tess.tessellate_path( &ruffle_path_to_lyon_path(commands, true), &FillOptions::even_odd(), &mut buffers_builder, ) { // This may just be a degenerate path; skip it. log::error!("Tessellation failure: {:?}", e); continue; } let uniforms = swf_gradient_to_uniforms(2, gradient, *focal_point); let matrix = swf_to_gl_matrix(gradient.matrix); flush_draw( shape.id, IncompleteDrawType::Gradient { texture_transform: matrix, gradient: uniforms, }, &mut draws, &mut lyon_mesh, &self.device, &transforms_ubo, &colors_ubo, &self.pipelines, ); } FillStyle::Bitmap { id, matrix, is_smoothed, is_repeating, } => { flush_draw( shape.id, IncompleteDrawType::Color, &mut draws, &mut lyon_mesh, &self.device, &transforms_ubo, &colors_ubo, &self.pipelines, ); let mut buffers_builder = BuffersBuilder::new( &mut lyon_mesh, RuffleVertexCtor { color: [1.0, 1.0, 1.0, 1.0], }, ); if let Err(e) = fill_tess.tessellate_path( &ruffle_path_to_lyon_path(commands, true), &FillOptions::even_odd(), &mut buffers_builder, ) { // This may just be a degenerate path; skip it. log::error!("Tessellation failure: {:?}", e); continue; } let texture = match self .textures .iter() .find(|(other_id, _tex)| *other_id == *id) { None => { log::error!("Couldn't fill shape with unknown bitmap {}", id); continue; } Some(t) => &t.1, }; let texture_view = texture.texture.create_view(&Default::default()); flush_draw( shape.id, IncompleteDrawType::Bitmap { texture_transform: swf_bitmap_to_gl_matrix( *matrix, texture.width, texture.height, ), is_smoothed: *is_smoothed, is_repeating: *is_repeating, texture_view, id: *id, }, &mut draws, &mut lyon_mesh, &self.device, &transforms_ubo, &colors_ubo, &self.pipelines, ); } }, DrawPath::Stroke { style, commands, is_closed, } => { let color = [ f32::from(style.color.r) / 255.0, f32::from(style.color.g) / 255.0, f32::from(style.color.b) / 255.0, f32::from(style.color.a) / 255.0, ]; let mut buffers_builder = BuffersBuilder::new(&mut lyon_mesh, RuffleVertexCtor { color }); // TODO(Herschel): 0 width indicates "hairline". let width = if style.width.to_pixels() >= 1.0 { style.width.to_pixels() as f32 } else { 1.0 }; let mut options = StrokeOptions::default() .with_line_width(width) .with_line_join(match style.join_style { swf::LineJoinStyle::Round => tessellation::LineJoin::Round, swf::LineJoinStyle::Bevel => tessellation::LineJoin::Bevel, swf::LineJoinStyle::Miter(_) => tessellation::LineJoin::MiterClip, }) .with_start_cap(match style.start_cap { swf::LineCapStyle::None => tessellation::LineCap::Butt, swf::LineCapStyle::Round => tessellation::LineCap::Round, swf::LineCapStyle::Square => tessellation::LineCap::Square, }) .with_end_cap(match style.end_cap { swf::LineCapStyle::None => tessellation::LineCap::Butt, swf::LineCapStyle::Round => tessellation::LineCap::Round, swf::LineCapStyle::Square => tessellation::LineCap::Square, }); if let swf::LineJoinStyle::Miter(limit) = style.join_style { options = options.with_miter_limit(limit); } if let Err(e) = stroke_tess.tessellate_path( &ruffle_path_to_lyon_path(commands, is_closed), &options, &mut buffers_builder, ) { // This may just be a degenerate path; skip it. log::error!("Tessellation failure: {:?}", e); continue; } } } } flush_draw( shape.id, IncompleteDrawType::Color, &mut draws, &mut lyon_mesh, &self.device, &transforms_ubo, &colors_ubo, &self.pipelines, ); Mesh { draws, transforms: transforms_ubo, colors_buffer: colors_ubo, colors_last: ColorTransform::default(), shape_id: shape.id, } } fn register_bitmap( &mut self, id: swf::CharacterId, bitmap: Bitmap, debug_str: &str, ) -> Result { let extent = wgpu::Extent3d { width: bitmap.width, height: bitmap.height, depth: 1, }; let data = match bitmap.data { BitmapFormat::Rgba(data) => data, BitmapFormat::Rgb(data) => { // Expand to RGBA. let mut as_rgba = Vec::with_capacity(extent.width as usize * extent.height as usize * 4); for i in (0..data.len()).step_by(3) { as_rgba.push(data[i]); as_rgba.push(data[i + 1]); as_rgba.push(data[i + 2]); as_rgba.push(255); } as_rgba } }; let texture_label = create_debug_label!("{} Texture {}", debug_str, id); let texture = self.device.create_texture(&wgpu::TextureDescriptor { label: texture_label.as_deref(), size: extent, mip_level_count: 1, sample_count: 1, dimension: wgpu::TextureDimension::D2, format: wgpu::TextureFormat::Rgba8Unorm, usage: wgpu::TextureUsage::SAMPLED | wgpu::TextureUsage::COPY_DST, }); self.queue.write_texture( wgpu::TextureCopyView { texture: &texture, mip_level: 0, origin: Default::default(), }, &data, wgpu::TextureDataLayout { offset: 0, bytes_per_row: 4 * extent.width, rows_per_image: 0, }, extent, ); let handle = BitmapHandle(self.textures.len()); self.textures.push(( id, Texture { texture, width: bitmap.width, height: bitmap.height, }, )); Ok(BitmapInfo { handle, width: bitmap.width.try_into().unwrap(), height: bitmap.height.try_into().unwrap(), }) } pub fn target(&self) -> &T { &self.target } pub fn device(&self) -> &wgpu::Device { &self.device } } impl RenderBackend for WgpuRenderBackend { fn set_viewport_dimensions(&mut self, width: u32, height: u32) { // Avoid panics from creating 0-sized framebuffers. let width = std::cmp::max(width, 1); let height = std::cmp::max(height, 1); self.target.resize(&self.device, width, height); let label = create_debug_label!("Framebuffer texture"); let frame_buffer = self.device.create_texture(&wgpu::TextureDescriptor { label: label.as_deref(), size: wgpu::Extent3d { width, height, depth: 1, }, mip_level_count: 1, sample_count: self.msaa_sample_count, dimension: wgpu::TextureDimension::D2, format: self.target.format(), usage: wgpu::TextureUsage::OUTPUT_ATTACHMENT, }); self.frame_buffer_view = frame_buffer.create_view(&Default::default()); let label = create_debug_label!("Depth texture"); let depth_texture = self.device.create_texture(&wgpu::TextureDescriptor { label: label.as_deref(), size: wgpu::Extent3d { width, height, depth: 1, }, mip_level_count: 1, sample_count: self.msaa_sample_count, dimension: wgpu::TextureDimension::D2, format: wgpu::TextureFormat::Depth24PlusStencil8, usage: wgpu::TextureUsage::OUTPUT_ATTACHMENT, }); self.depth_texture_view = depth_texture.create_view(&Default::default()); self.viewport_width = width as f32; self.viewport_height = height as f32; self.view_matrix = build_view_matrix(width, height); } fn register_shape(&mut self, shape: DistilledShape) -> ShapeHandle { let handle = ShapeHandle(self.meshes.len()); let mesh = self.register_shape_internal(shape); self.meshes.push(mesh); handle } fn replace_shape(&mut self, shape: DistilledShape, handle: ShapeHandle) { let mesh = self.register_shape_internal(shape); self.meshes[handle.0] = mesh; } fn register_glyph_shape(&mut self, glyph: &Glyph) -> ShapeHandle { let shape = ruffle_core::shape_utils::swf_glyph_to_shape(glyph); let handle = ShapeHandle(self.meshes.len()); let mesh = self.register_shape_internal((&shape).into()); self.meshes.push(mesh); handle } fn register_bitmap_jpeg( &mut self, id: u16, data: &[u8], jpeg_tables: Option<&[u8]>, ) -> Result { let data = ruffle_core::backend::render::glue_tables_to_jpeg(data, jpeg_tables); self.register_bitmap_jpeg_2(id, &data[..]) } fn register_bitmap_jpeg_2(&mut self, id: u16, data: &[u8]) -> Result { let bitmap = ruffle_core::backend::render::decode_define_bits_jpeg(data, None)?; self.register_bitmap(id, bitmap, "JPEG2") } fn register_bitmap_jpeg_3( &mut self, id: u16, jpeg_data: &[u8], alpha_data: &[u8], ) -> Result { let bitmap = ruffle_core::backend::render::decode_define_bits_jpeg(jpeg_data, Some(alpha_data))?; self.register_bitmap(id, bitmap, "JPEG3") } fn register_bitmap_png(&mut self, swf_tag: &DefineBitsLossless) -> Result { let bitmap = ruffle_core::backend::render::decode_define_bits_lossless(swf_tag)?; self.register_bitmap(swf_tag.id, bitmap, "PNG") } fn begin_frame(&mut self, clear: Color) { assert!(self.current_frame.is_none()); self.current_frame = match self.target.get_next_texture() { Ok(frame) => { let label = create_debug_label!("Frame encoder"); Some(( frame, self.device .create_command_encoder(&wgpu::CommandEncoderDescriptor { label: label.as_deref(), }), )) } Err(e) => { log::warn!("Couldn't begin new render frame: {}", e); None } }; self.num_masks = 0; self.num_masks_active = 0; self.write_stencil_mask = 0; self.test_stencil_mask = 0; self.next_stencil_mask = 1; if let Some((frame_output, encoder)) = &mut self.current_frame { let (color_attachment, resolve_target) = if self.msaa_sample_count >= 2 { (&self.frame_buffer_view, Some(frame_output.view())) } else { (frame_output.view(), None) }; encoder.begin_render_pass(&wgpu::RenderPassDescriptor { color_attachments: &[wgpu::RenderPassColorAttachmentDescriptor { attachment: color_attachment, ops: wgpu::Operations { load: wgpu::LoadOp::Clear(wgpu::Color { r: f64::from(clear.r) / 255.0, g: f64::from(clear.g) / 255.0, b: f64::from(clear.b) / 255.0, a: f64::from(clear.a) / 255.0, }), store: true, }, resolve_target, }], depth_stencil_attachment: Some(wgpu::RenderPassDepthStencilAttachmentDescriptor { attachment: &self.depth_texture_view, depth_ops: Some(wgpu::Operations { load: wgpu::LoadOp::Clear(0.0), store: true, }), stencil_ops: Some(wgpu::Operations { load: wgpu::LoadOp::Clear(0), store: true, }), }), }); } } fn render_bitmap(&mut self, bitmap: BitmapHandle, transform: &Transform) { if let Some((_id, texture)) = self.textures.get(bitmap.0) { let (frame_output, encoder) = if let Some((frame_output, encoder)) = &mut self.current_frame { (frame_output, encoder) } else { return; }; let transform = Transform { matrix: transform.matrix * Matrix { a: texture.width as f32, d: texture.height as f32, ..Default::default() }, ..*transform }; let world_matrix = [ [transform.matrix.a, transform.matrix.b, 0.0, 0.0], [transform.matrix.c, transform.matrix.d, 0.0, 0.0], [0.0, 0.0, 1.0, 0.0], [ transform.matrix.tx.to_pixels() as f32, transform.matrix.ty.to_pixels() as f32, 0.0, 1.0, ], ]; let transforms_ubo = create_buffer_with_data( &self.device, bytemuck::cast_slice(&[Transforms { view_matrix: self.view_matrix, world_matrix, }]), wgpu::BufferUsage::UNIFORM, create_debug_label!("Bitmap {} transforms transfer buffer", bitmap.0), ); let colors_ubo = create_buffer_with_data( &self.device, bytemuck::cast_slice(&[ColorAdjustments::from(transform.color_transform)]), wgpu::BufferUsage::UNIFORM, create_debug_label!("Bitmap {} colors transfer buffer", bitmap.0), ); let texture_view = texture.texture.create_view(&Default::default()); let sampler_label = create_debug_label!("Bitmap {} sampler", bitmap.0); let sampler = self.device.create_sampler(&wgpu::SamplerDescriptor { label: sampler_label.as_deref(), address_mode_u: wgpu::AddressMode::ClampToEdge, address_mode_v: wgpu::AddressMode::ClampToEdge, address_mode_w: wgpu::AddressMode::ClampToEdge, mag_filter: wgpu::FilterMode::Linear, min_filter: wgpu::FilterMode::Linear, mipmap_filter: wgpu::FilterMode::Linear, lod_min_clamp: 0.0, lod_max_clamp: 100.0, compare: None, anisotropy_clamp: None, }); let bind_group_label = create_debug_label!("Bitmap {} bind group", bitmap.0); let bind_group = self.device.create_bind_group(&wgpu::BindGroupDescriptor { layout: &self.pipelines.bitmap.bind_layout, entries: &[ wgpu::BindGroupEntry { binding: 0, resource: wgpu::BindingResource::Buffer( transforms_ubo.slice(0..std::mem::size_of::() as u64), ), }, wgpu::BindGroupEntry { binding: 1, resource: wgpu::BindingResource::Buffer( self.quad_tex_transforms .slice(0..std::mem::size_of::() as u64), ), }, wgpu::BindGroupEntry { binding: 2, resource: wgpu::BindingResource::Buffer( colors_ubo.slice(0..std::mem::size_of::() as u64), ), }, wgpu::BindGroupEntry { binding: 3, resource: wgpu::BindingResource::TextureView(&texture_view), }, wgpu::BindGroupEntry { binding: 4, resource: wgpu::BindingResource::Sampler(&sampler), }, ], label: bind_group_label.as_deref(), }); let (color_attachment, resolve_target) = if self.msaa_sample_count >= 2 { (&self.frame_buffer_view, Some(frame_output.view())) } else { (frame_output.view(), None) }; let mut render_pass = encoder.begin_render_pass(&wgpu::RenderPassDescriptor { color_attachments: &[wgpu::RenderPassColorAttachmentDescriptor { attachment: color_attachment, resolve_target, ops: wgpu::Operations { load: wgpu::LoadOp::Load, store: true, }, }], depth_stencil_attachment: Some(wgpu::RenderPassDepthStencilAttachmentDescriptor { attachment: &self.depth_texture_view, depth_ops: Some(wgpu::Operations { load: wgpu::LoadOp::Load, store: true, }), stencil_ops: Some(wgpu::Operations { load: wgpu::LoadOp::Load, store: true, }), }), }); render_pass.set_pipeline(&self.pipelines.bitmap.pipeline_for( self.num_masks, self.num_masks_active, self.test_stencil_mask, self.write_stencil_mask, )); render_pass.set_bind_group(0, &bind_group, &[]); render_pass.set_vertex_buffer(0, self.quad_vbo.slice(..)); render_pass.set_index_buffer(self.quad_ibo.slice(..)); if self.num_masks_active < self.num_masks { render_pass.set_stencil_reference(self.write_stencil_mask); } else { render_pass.set_stencil_reference(self.test_stencil_mask); } render_pass.draw_indexed(0..6, 0, 0..1); } } fn render_shape(&mut self, shape: ShapeHandle, transform: &Transform) { let (frame_output, encoder) = if let Some((frame_output, encoder)) = &mut self.current_frame { (frame_output, encoder) } else { return; }; let mesh = &mut self.meshes[shape.0]; let world_matrix = [ [transform.matrix.a, transform.matrix.b, 0.0, 0.0], [transform.matrix.c, transform.matrix.d, 0.0, 0.0], [0.0, 0.0, 1.0, 0.0], [ transform.matrix.tx.to_pixels() as f32, transform.matrix.ty.to_pixels() as f32, 0.0, 1.0, ], ]; if transform.color_transform != mesh.colors_last { let colors_temp = create_buffer_with_data( &self.device, bytemuck::cast_slice(&[ColorAdjustments::from(transform.color_transform)]), wgpu::BufferUsage::COPY_SRC, create_debug_label!("Shape {} colors transfer buffer", mesh.shape_id), ); encoder.copy_buffer_to_buffer( &colors_temp, 0, &mesh.colors_buffer, 0, std::mem::size_of::() as u64, ); mesh.colors_last = transform.color_transform; } let transforms_temp = create_buffer_with_data( &self.device, bytemuck::cast_slice(&[Transforms { view_matrix: self.view_matrix, world_matrix, }]), wgpu::BufferUsage::COPY_SRC, create_debug_label!("Shape {} transforms transfer buffer", mesh.shape_id), ); encoder.copy_buffer_to_buffer( &transforms_temp, 0, &mesh.transforms, 0, std::mem::size_of::() as u64, ); let (color_attachment, resolve_target) = if self.msaa_sample_count >= 2 { (&self.frame_buffer_view, Some(frame_output.view())) } else { (frame_output.view(), None) }; let mut render_pass = encoder.begin_render_pass(&wgpu::RenderPassDescriptor { color_attachments: &[wgpu::RenderPassColorAttachmentDescriptor { attachment: color_attachment, resolve_target, ops: wgpu::Operations { load: wgpu::LoadOp::Load, store: true, }, }], depth_stencil_attachment: Some(wgpu::RenderPassDepthStencilAttachmentDescriptor { attachment: &self.depth_texture_view, depth_ops: Some(wgpu::Operations { load: wgpu::LoadOp::Load, store: true, }), stencil_ops: Some(wgpu::Operations { load: wgpu::LoadOp::Load, store: true, }), }), }); for draw in &mesh.draws { match &draw.draw_type { DrawType::Color => { render_pass.set_pipeline(&self.pipelines.color.pipeline_for( self.num_masks, self.num_masks_active, self.test_stencil_mask, self.write_stencil_mask, )); } DrawType::Gradient { .. } => { render_pass.set_pipeline(&self.pipelines.gradient.pipeline_for( self.num_masks, self.num_masks_active, self.test_stencil_mask, self.write_stencil_mask, )); } DrawType::Bitmap { .. } => { render_pass.set_pipeline(&self.pipelines.bitmap.pipeline_for( self.num_masks, self.num_masks_active, self.test_stencil_mask, self.write_stencil_mask, )); } } render_pass.set_bind_group(0, &draw.bind_group, &[]); render_pass.set_vertex_buffer(0, draw.vertex_buffer.slice(..)); render_pass.set_index_buffer(draw.index_buffer.slice(..)); if self.num_masks_active < self.num_masks { render_pass.set_stencil_reference(self.write_stencil_mask); } else { render_pass.set_stencil_reference(self.test_stencil_mask); } render_pass.draw_indexed(0..draw.index_count, 0, 0..1); } } fn draw_rect(&mut self, color: Color, matrix: &Matrix) { let (frame_output, encoder) = if let Some((frame_output, encoder)) = &mut self.current_frame { (frame_output, encoder) } else { return; }; let world_matrix = [ [matrix.a, matrix.b, 0.0, 0.0], [matrix.c, matrix.d, 0.0, 0.0], [0.0, 0.0, 1.0, 0.0], [ matrix.tx.to_pixels() as f32, matrix.ty.to_pixels() as f32, 0.0, 1.0, ], ]; let mult_color = [ f32::from(color.r) / 255.0, f32::from(color.g) / 255.0, f32::from(color.b) / 255.0, f32::from(color.a) / 255.0, ]; let add_color = [0.0, 0.0, 0.0, 0.0]; let transforms_ubo = create_buffer_with_data( &self.device, bytemuck::cast_slice(&[Transforms { view_matrix: self.view_matrix, world_matrix, }]), wgpu::BufferUsage::UNIFORM, create_debug_label!("Rectangle transfer buffer"), ); let colors_ubo = create_buffer_with_data( &self.device, bytemuck::cast_slice(&[ColorAdjustments { mult_color, add_color, }]), wgpu::BufferUsage::UNIFORM, create_debug_label!("Rectangle colors transfer buffer"), ); let bind_group_label = create_debug_label!("Rectangle bind group"); let bind_group = self.device.create_bind_group(&wgpu::BindGroupDescriptor { layout: &self.pipelines.color.bind_layout, entries: &[ wgpu::BindGroupEntry { binding: 0, resource: wgpu::BindingResource::Buffer( transforms_ubo.slice(0..std::mem::size_of::() as u64), ), }, wgpu::BindGroupEntry { binding: 1, resource: wgpu::BindingResource::Buffer( colors_ubo.slice(0..std::mem::size_of::() as u64), ), }, ], label: bind_group_label.as_deref(), }); let (color_attachment, resolve_target) = if self.msaa_sample_count >= 2 { (&self.frame_buffer_view, Some(frame_output.view())) } else { (frame_output.view(), None) }; let mut render_pass = encoder.begin_render_pass(&wgpu::RenderPassDescriptor { color_attachments: &[wgpu::RenderPassColorAttachmentDescriptor { attachment: color_attachment, resolve_target, ops: wgpu::Operations { load: wgpu::LoadOp::Load, store: true, }, }], depth_stencil_attachment: Some(wgpu::RenderPassDepthStencilAttachmentDescriptor { attachment: &self.depth_texture_view, depth_ops: Some(wgpu::Operations { load: wgpu::LoadOp::Load, store: true, }), stencil_ops: Some(wgpu::Operations { load: wgpu::LoadOp::Load, store: true, }), }), }); render_pass.set_pipeline(&self.pipelines.color.pipeline_for( self.num_masks, self.num_masks_active, self.test_stencil_mask, self.write_stencil_mask, )); render_pass.set_bind_group(0, &bind_group, &[]); render_pass.set_vertex_buffer(0, self.quad_vbo.slice(..)); render_pass.set_index_buffer(self.quad_ibo.slice(..)); if self.num_masks_active < self.num_masks { render_pass.set_stencil_reference(self.write_stencil_mask); } else { render_pass.set_stencil_reference(self.test_stencil_mask); } render_pass.draw_indexed(0..6, 0, 0..1); } fn end_frame(&mut self) { if let Some((_frame, encoder)) = self.current_frame.take() { let register_encoder_label = create_debug_label!("Register encoder"); let new_register_encoder = self.device .create_command_encoder(&wgpu::CommandEncoderDescriptor { label: register_encoder_label.as_deref(), }); let register_buffer = replace(&mut self.register_encoder, new_register_encoder).finish(); self.target.submit( &self.device, &self.queue, vec![register_buffer, encoder.finish()], ); } } fn draw_letterbox(&mut self, letterbox: Letterbox) { match letterbox { Letterbox::None => {} Letterbox::Letterbox(margin) => { self.draw_rect( Color { r: 0, g: 0, b: 0, a: 255, }, &Matrix::create_box( self.viewport_width, margin, 0.0, Twips::zero(), Twips::zero(), ), ); self.draw_rect( Color { r: 0, g: 0, b: 0, a: 255, }, &Matrix::create_box( self.viewport_width, margin, 0.0, Twips::zero(), Twips::from_pixels((self.viewport_height - margin) as f64), ), ); } Letterbox::Pillarbox(margin) => { self.draw_rect( Color { r: 0, g: 0, b: 0, a: 255, }, &Matrix::create_box( margin, self.viewport_height, 0.0, Twips::zero(), Twips::zero(), ), ); self.draw_rect( Color { r: 0, g: 0, b: 0, a: 255, }, &Matrix::create_box( margin, self.viewport_height, 0.0, Twips::from_pixels((self.viewport_width - margin) as f64), Twips::zero(), ), ); } } } fn push_mask(&mut self) { // Desktop draws the masker to the stencil buffer, one bit per mask. // Masks-within-masks are handled as a bitmask. // This does unfortunately mean we are limited in the number of masks at once (8 bits). if self.next_stencil_mask >= 0x100 { // If we've reached the limit of masks, clear the stencil buffer and start over. // But this may not be correct if there is still a mask active (mask-within-mask). if self.test_stencil_mask != 0 { log::warn!( "Too many masks active for stencil buffer; possibly incorrect rendering" ); } self.next_stencil_mask = 1; if let Some((frame_output, encoder)) = &mut self.current_frame { let (color_attachment, resolve_target) = if self.msaa_sample_count >= 2 { (&self.frame_buffer_view, Some(frame_output.view())) } else { (frame_output.view(), None) }; encoder.begin_render_pass(&wgpu::RenderPassDescriptor { color_attachments: &[wgpu::RenderPassColorAttachmentDescriptor { attachment: color_attachment, resolve_target, ops: wgpu::Operations { load: wgpu::LoadOp::Load, store: true, }, }], depth_stencil_attachment: Some( wgpu::RenderPassDepthStencilAttachmentDescriptor { attachment: &self.depth_texture_view, depth_ops: Some(wgpu::Operations { load: wgpu::LoadOp::Load, store: true, }), stencil_ops: Some(wgpu::Operations { load: wgpu::LoadOp::Clear(self.test_stencil_mask), store: true, }), }, ), }); } } self.num_masks += 1; self.mask_stack .push((self.write_stencil_mask, self.test_stencil_mask)); self.write_stencil_mask = self.next_stencil_mask; self.test_stencil_mask |= self.next_stencil_mask; self.next_stencil_mask <<= 1; } fn activate_mask(&mut self) { self.num_masks_active += 1; } fn pop_mask(&mut self) { if !self.mask_stack.is_empty() { self.num_masks -= 1; self.num_masks_active -= 1; let (write, test) = self.mask_stack.pop().unwrap(); self.write_stencil_mask = write; self.test_stencil_mask = test; } } } fn create_quad_buffers(device: &wgpu::Device) -> (wgpu::Buffer, wgpu::Buffer, wgpu::Buffer) { let vertices = [ GPUVertex { position: [0.0, 0.0], color: [1.0, 1.0, 1.0, 1.0], }, GPUVertex { position: [1.0, 0.0], color: [1.0, 1.0, 1.0, 1.0], }, GPUVertex { position: [1.0, 1.0], color: [1.0, 1.0, 1.0, 1.0], }, GPUVertex { position: [0.0, 1.0], color: [1.0, 1.0, 1.0, 1.0], }, ]; let indices: [u16; 6] = [0, 1, 2, 0, 2, 3]; let vbo = create_buffer_with_data( device, bytemuck::cast_slice(&vertices), wgpu::BufferUsage::VERTEX, create_debug_label!("Quad vbo"), ); let ibo = create_buffer_with_data( device, bytemuck::cast_slice(&indices), wgpu::BufferUsage::INDEX, create_debug_label!("Quad ibo"), ); let tex_transforms = create_buffer_with_data( device, bytemuck::cast_slice(&[TextureTransforms { u_matrix: [ [1.0, 0.0, 0.0, 0.0], [0.0, 1.0, 0.0, 0.0], [0.0, 0.0, 1.0, 0.0], [0.0, 0.0, 0.0, 1.0], ], }]), wgpu::BufferUsage::UNIFORM, create_debug_label!("Quad tex transforms"), ); (vbo, ibo, tex_transforms) } /// Converts a gradient to the uniforms used by the shader. fn swf_gradient_to_uniforms( gradient_type: i32, gradient: &swf::Gradient, focal_point: f32, ) -> GradientUniforms { let mut colors: [[f32; 4]; 16] = Default::default(); let mut ratios: [f32; 16] = Default::default(); for (i, record) in gradient.records.iter().enumerate() { if i >= 16 { // TODO: we need to support these! break; } colors[i] = [ f32::from(record.color.r) / 255.0, f32::from(record.color.g) / 255.0, f32::from(record.color.b) / 255.0, f32::from(record.color.a) / 255.0, ]; ratios[i] = f32::from(record.ratio) / 255.0; } // Convert colors from sRGB to linear space if necessary. if gradient.interpolation == GradientInterpolation::LinearRGB { for color in &mut colors[0..gradient.records.len()] { *color = srgb_to_linear(*color); } } GradientUniforms { gradient_type, ratios, colors, interpolation: (gradient.interpolation == GradientInterpolation::LinearRGB) as i32, num_colors: gradient.records.len() as u32, repeat_mode: gradient_spread_mode_index(gradient.spread), focal_point, } } #[derive(Debug)] struct Texture { width: u32, height: u32, texture: wgpu::Texture, } struct RuffleVertexCtor { color: [f32; 4], } impl FillVertexConstructor for RuffleVertexCtor { fn new_vertex(&mut self, position: lyon::math::Point, _: FillAttributes) -> GPUVertex { GPUVertex { position: [position.x, position.y], color: self.color, } } } impl StrokeVertexConstructor for RuffleVertexCtor { fn new_vertex(&mut self, position: lyon::math::Point, _: StrokeAttributes) -> GPUVertex { GPUVertex { position: [position.x, position.y], color: self.color, } } }