LingmoOS-kernel/net/unix/garbage.c

632 lines
16 KiB
C

// SPDX-License-Identifier: GPL-2.0-or-later
/*
* NET3: Garbage Collector For AF_UNIX sockets
*
* Garbage Collector:
* Copyright (C) Barak A. Pearlmutter.
*
* Chopped about by Alan Cox 22/3/96 to make it fit the AF_UNIX socket problem.
* If it doesn't work blame me, it worked when Barak sent it.
*
* Assumptions:
*
* - object w/ a bit
* - free list
*
* Current optimizations:
*
* - explicit stack instead of recursion
* - tail recurse on first born instead of immediate push/pop
* - we gather the stuff that should not be killed into tree
* and stack is just a path from root to the current pointer.
*
* Future optimizations:
*
* - don't just push entire root set; process in place
*
* Fixes:
* Alan Cox 07 Sept 1997 Vmalloc internal stack as needed.
* Cope with changing max_files.
* Al Viro 11 Oct 1998
* Graph may have cycles. That is, we can send the descriptor
* of foo to bar and vice versa. Current code chokes on that.
* Fix: move SCM_RIGHTS ones into the separate list and then
* skb_free() them all instead of doing explicit fput's.
* Another problem: since fput() may block somebody may
* create a new unix_socket when we are in the middle of sweep
* phase. Fix: revert the logic wrt MARKED. Mark everything
* upon the beginning and unmark non-junk ones.
*
* [12 Oct 1998] AAARGH! New code purges all SCM_RIGHTS
* sent to connect()'ed but still not accept()'ed sockets.
* Fixed. Old code had slightly different problem here:
* extra fput() in situation when we passed the descriptor via
* such socket and closed it (descriptor). That would happen on
* each unix_gc() until the accept(). Since the struct file in
* question would go to the free list and might be reused...
* That might be the reason of random oopses on filp_close()
* in unrelated processes.
*
* AV 28 Feb 1999
* Kill the explicit allocation of stack. Now we keep the tree
* with root in dummy + pointer (gc_current) to one of the nodes.
* Stack is represented as path from gc_current to dummy. Unmark
* now means "add to tree". Push == "make it a son of gc_current".
* Pop == "move gc_current to parent". We keep only pointers to
* parents (->gc_tree).
* AV 1 Mar 1999
* Damn. Added missing check for ->dead in listen queues scanning.
*
* Miklos Szeredi 25 Jun 2007
* Reimplement with a cycle collecting algorithm. This should
* solve several problems with the previous code, like being racy
* wrt receive and holding up unrelated socket operations.
*/
#include <linux/kernel.h>
#include <linux/string.h>
#include <linux/socket.h>
#include <linux/un.h>
#include <linux/net.h>
#include <linux/fs.h>
#include <linux/skbuff.h>
#include <linux/netdevice.h>
#include <linux/file.h>
#include <linux/proc_fs.h>
#include <linux/mutex.h>
#include <linux/wait.h>
#include <net/sock.h>
#include <net/af_unix.h>
#include <net/scm.h>
#include <net/tcp_states.h>
struct unix_sock *unix_get_socket(struct file *filp)
{
struct inode *inode = file_inode(filp);
/* Socket ? */
if (S_ISSOCK(inode->i_mode) && !(filp->f_mode & FMODE_PATH)) {
struct socket *sock = SOCKET_I(inode);
const struct proto_ops *ops;
struct sock *sk = sock->sk;
ops = READ_ONCE(sock->ops);
/* PF_UNIX ? */
if (sk && ops && ops->family == PF_UNIX)
return unix_sk(sk);
}
return NULL;
}
static struct unix_vertex *unix_edge_successor(struct unix_edge *edge)
{
/* If an embryo socket has a fd,
* the listener indirectly holds the fd's refcnt.
*/
if (edge->successor->listener)
return unix_sk(edge->successor->listener)->vertex;
return edge->successor->vertex;
}
static bool unix_graph_maybe_cyclic;
static bool unix_graph_grouped;
static void unix_update_graph(struct unix_vertex *vertex)
{
/* If the receiver socket is not inflight, no cyclic
* reference could be formed.
*/
if (!vertex)
return;
unix_graph_maybe_cyclic = true;
unix_graph_grouped = false;
}
static LIST_HEAD(unix_unvisited_vertices);
enum unix_vertex_index {
UNIX_VERTEX_INDEX_MARK1,
UNIX_VERTEX_INDEX_MARK2,
UNIX_VERTEX_INDEX_START,
};
static unsigned long unix_vertex_unvisited_index = UNIX_VERTEX_INDEX_MARK1;
static void unix_add_edge(struct scm_fp_list *fpl, struct unix_edge *edge)
{
struct unix_vertex *vertex = edge->predecessor->vertex;
if (!vertex) {
vertex = list_first_entry(&fpl->vertices, typeof(*vertex), entry);
vertex->index = unix_vertex_unvisited_index;
vertex->out_degree = 0;
INIT_LIST_HEAD(&vertex->edges);
INIT_LIST_HEAD(&vertex->scc_entry);
list_move_tail(&vertex->entry, &unix_unvisited_vertices);
edge->predecessor->vertex = vertex;
}
vertex->out_degree++;
list_add_tail(&edge->vertex_entry, &vertex->edges);
unix_update_graph(unix_edge_successor(edge));
}
static void unix_del_edge(struct scm_fp_list *fpl, struct unix_edge *edge)
{
struct unix_vertex *vertex = edge->predecessor->vertex;
if (!fpl->dead)
unix_update_graph(unix_edge_successor(edge));
list_del(&edge->vertex_entry);
vertex->out_degree--;
if (!vertex->out_degree) {
edge->predecessor->vertex = NULL;
list_move_tail(&vertex->entry, &fpl->vertices);
}
}
static void unix_free_vertices(struct scm_fp_list *fpl)
{
struct unix_vertex *vertex, *next_vertex;
list_for_each_entry_safe(vertex, next_vertex, &fpl->vertices, entry) {
list_del(&vertex->entry);
kfree(vertex);
}
}
static DEFINE_SPINLOCK(unix_gc_lock);
unsigned int unix_tot_inflight;
void unix_add_edges(struct scm_fp_list *fpl, struct unix_sock *receiver)
{
int i = 0, j = 0;
spin_lock(&unix_gc_lock);
if (!fpl->count_unix)
goto out;
do {
struct unix_sock *inflight = unix_get_socket(fpl->fp[j++]);
struct unix_edge *edge;
if (!inflight)
continue;
edge = fpl->edges + i++;
edge->predecessor = inflight;
edge->successor = receiver;
unix_add_edge(fpl, edge);
} while (i < fpl->count_unix);
receiver->scm_stat.nr_unix_fds += fpl->count_unix;
WRITE_ONCE(unix_tot_inflight, unix_tot_inflight + fpl->count_unix);
out:
WRITE_ONCE(fpl->user->unix_inflight, fpl->user->unix_inflight + fpl->count);
spin_unlock(&unix_gc_lock);
fpl->inflight = true;
unix_free_vertices(fpl);
}
void unix_del_edges(struct scm_fp_list *fpl)
{
struct unix_sock *receiver;
int i = 0;
spin_lock(&unix_gc_lock);
if (!fpl->count_unix)
goto out;
do {
struct unix_edge *edge = fpl->edges + i++;
unix_del_edge(fpl, edge);
} while (i < fpl->count_unix);
if (!fpl->dead) {
receiver = fpl->edges[0].successor;
receiver->scm_stat.nr_unix_fds -= fpl->count_unix;
}
WRITE_ONCE(unix_tot_inflight, unix_tot_inflight - fpl->count_unix);
out:
WRITE_ONCE(fpl->user->unix_inflight, fpl->user->unix_inflight - fpl->count);
spin_unlock(&unix_gc_lock);
fpl->inflight = false;
}
void unix_update_edges(struct unix_sock *receiver)
{
/* nr_unix_fds is only updated under unix_state_lock().
* If it's 0 here, the embryo socket is not part of the
* inflight graph, and GC will not see it, so no lock needed.
*/
if (!receiver->scm_stat.nr_unix_fds) {
receiver->listener = NULL;
} else {
spin_lock(&unix_gc_lock);
unix_update_graph(unix_sk(receiver->listener)->vertex);
receiver->listener = NULL;
spin_unlock(&unix_gc_lock);
}
}
int unix_prepare_fpl(struct scm_fp_list *fpl)
{
struct unix_vertex *vertex;
int i;
if (!fpl->count_unix)
return 0;
for (i = 0; i < fpl->count_unix; i++) {
vertex = kmalloc(sizeof(*vertex), GFP_KERNEL);
if (!vertex)
goto err;
list_add(&vertex->entry, &fpl->vertices);
}
fpl->edges = kvmalloc_array(fpl->count_unix, sizeof(*fpl->edges),
GFP_KERNEL_ACCOUNT);
if (!fpl->edges)
goto err;
return 0;
err:
unix_free_vertices(fpl);
return -ENOMEM;
}
void unix_destroy_fpl(struct scm_fp_list *fpl)
{
if (fpl->inflight)
unix_del_edges(fpl);
kvfree(fpl->edges);
unix_free_vertices(fpl);
}
static bool unix_vertex_dead(struct unix_vertex *vertex)
{
struct unix_edge *edge;
struct unix_sock *u;
long total_ref;
list_for_each_entry(edge, &vertex->edges, vertex_entry) {
struct unix_vertex *next_vertex = unix_edge_successor(edge);
/* The vertex's fd can be received by a non-inflight socket. */
if (!next_vertex)
return false;
/* The vertex's fd can be received by an inflight socket in
* another SCC.
*/
if (next_vertex->scc_index != vertex->scc_index)
return false;
}
/* No receiver exists out of the same SCC. */
edge = list_first_entry(&vertex->edges, typeof(*edge), vertex_entry);
u = edge->predecessor;
total_ref = file_count(u->sk.sk_socket->file);
/* If not close()d, total_ref > out_degree. */
if (total_ref != vertex->out_degree)
return false;
return true;
}
enum unix_recv_queue_lock_class {
U_RECVQ_LOCK_NORMAL,
U_RECVQ_LOCK_EMBRYO,
};
static void unix_collect_queue(struct unix_sock *u, struct sk_buff_head *hitlist)
{
skb_queue_splice_init(&u->sk.sk_receive_queue, hitlist);
#if IS_ENABLED(CONFIG_AF_UNIX_OOB)
if (u->oob_skb) {
WARN_ON_ONCE(skb_unref(u->oob_skb));
u->oob_skb = NULL;
}
#endif
}
static void unix_collect_skb(struct list_head *scc, struct sk_buff_head *hitlist)
{
struct unix_vertex *vertex;
list_for_each_entry_reverse(vertex, scc, scc_entry) {
struct sk_buff_head *queue;
struct unix_edge *edge;
struct unix_sock *u;
edge = list_first_entry(&vertex->edges, typeof(*edge), vertex_entry);
u = edge->predecessor;
queue = &u->sk.sk_receive_queue;
spin_lock(&queue->lock);
if (u->sk.sk_state == TCP_LISTEN) {
struct sk_buff *skb;
skb_queue_walk(queue, skb) {
struct sk_buff_head *embryo_queue = &skb->sk->sk_receive_queue;
/* listener -> embryo order, the inversion never happens. */
spin_lock_nested(&embryo_queue->lock, U_RECVQ_LOCK_EMBRYO);
unix_collect_queue(unix_sk(skb->sk), hitlist);
spin_unlock(&embryo_queue->lock);
}
} else {
unix_collect_queue(u, hitlist);
}
spin_unlock(&queue->lock);
}
}
static bool unix_scc_cyclic(struct list_head *scc)
{
struct unix_vertex *vertex;
struct unix_edge *edge;
/* SCC containing multiple vertices ? */
if (!list_is_singular(scc))
return true;
vertex = list_first_entry(scc, typeof(*vertex), scc_entry);
/* Self-reference or a embryo-listener circle ? */
list_for_each_entry(edge, &vertex->edges, vertex_entry) {
if (unix_edge_successor(edge) == vertex)
return true;
}
return false;
}
static LIST_HEAD(unix_visited_vertices);
static unsigned long unix_vertex_grouped_index = UNIX_VERTEX_INDEX_MARK2;
static void __unix_walk_scc(struct unix_vertex *vertex, unsigned long *last_index,
struct sk_buff_head *hitlist)
{
LIST_HEAD(vertex_stack);
struct unix_edge *edge;
LIST_HEAD(edge_stack);
next_vertex:
/* Push vertex to vertex_stack and mark it as on-stack
* (index >= UNIX_VERTEX_INDEX_START).
* The vertex will be popped when finalising SCC later.
*/
list_add(&vertex->scc_entry, &vertex_stack);
vertex->index = *last_index;
vertex->scc_index = *last_index;
(*last_index)++;
/* Explore neighbour vertices (receivers of the current vertex's fd). */
list_for_each_entry(edge, &vertex->edges, vertex_entry) {
struct unix_vertex *next_vertex = unix_edge_successor(edge);
if (!next_vertex)
continue;
if (next_vertex->index == unix_vertex_unvisited_index) {
/* Iterative deepening depth first search
*
* 1. Push a forward edge to edge_stack and set
* the successor to vertex for the next iteration.
*/
list_add(&edge->stack_entry, &edge_stack);
vertex = next_vertex;
goto next_vertex;
/* 2. Pop the edge directed to the current vertex
* and restore the ancestor for backtracking.
*/
prev_vertex:
edge = list_first_entry(&edge_stack, typeof(*edge), stack_entry);
list_del_init(&edge->stack_entry);
next_vertex = vertex;
vertex = edge->predecessor->vertex;
/* If the successor has a smaller scc_index, two vertices
* are in the same SCC, so propagate the smaller scc_index
* to skip SCC finalisation.
*/
vertex->scc_index = min(vertex->scc_index, next_vertex->scc_index);
} else if (next_vertex->index != unix_vertex_grouped_index) {
/* Loop detected by a back/cross edge.
*
* The successor is on vertex_stack, so two vertices are in
* the same SCC. If the successor has a smaller *scc_index*,
* propagate it to skip SCC finalisation.
*/
vertex->scc_index = min(vertex->scc_index, next_vertex->scc_index);
} else {
/* The successor was already grouped as another SCC */
}
}
if (vertex->index == vertex->scc_index) {
struct unix_vertex *v;
struct list_head scc;
bool scc_dead = true;
/* SCC finalised.
*
* If the scc_index was not updated, all the vertices above on
* vertex_stack are in the same SCC. Group them using scc_entry.
*/
__list_cut_position(&scc, &vertex_stack, &vertex->scc_entry);
list_for_each_entry_reverse(v, &scc, scc_entry) {
/* Don't restart DFS from this vertex in unix_walk_scc(). */
list_move_tail(&v->entry, &unix_visited_vertices);
/* Mark vertex as off-stack. */
v->index = unix_vertex_grouped_index;
if (scc_dead)
scc_dead = unix_vertex_dead(v);
}
if (scc_dead)
unix_collect_skb(&scc, hitlist);
else if (!unix_graph_maybe_cyclic)
unix_graph_maybe_cyclic = unix_scc_cyclic(&scc);
list_del(&scc);
}
/* Need backtracking ? */
if (!list_empty(&edge_stack))
goto prev_vertex;
}
static void unix_walk_scc(struct sk_buff_head *hitlist)
{
unsigned long last_index = UNIX_VERTEX_INDEX_START;
unix_graph_maybe_cyclic = false;
/* Visit every vertex exactly once.
* __unix_walk_scc() moves visited vertices to unix_visited_vertices.
*/
while (!list_empty(&unix_unvisited_vertices)) {
struct unix_vertex *vertex;
vertex = list_first_entry(&unix_unvisited_vertices, typeof(*vertex), entry);
__unix_walk_scc(vertex, &last_index, hitlist);
}
list_replace_init(&unix_visited_vertices, &unix_unvisited_vertices);
swap(unix_vertex_unvisited_index, unix_vertex_grouped_index);
unix_graph_grouped = true;
}
static void unix_walk_scc_fast(struct sk_buff_head *hitlist)
{
unix_graph_maybe_cyclic = false;
while (!list_empty(&unix_unvisited_vertices)) {
struct unix_vertex *vertex;
struct list_head scc;
bool scc_dead = true;
vertex = list_first_entry(&unix_unvisited_vertices, typeof(*vertex), entry);
list_add(&scc, &vertex->scc_entry);
list_for_each_entry_reverse(vertex, &scc, scc_entry) {
list_move_tail(&vertex->entry, &unix_visited_vertices);
if (scc_dead)
scc_dead = unix_vertex_dead(vertex);
}
if (scc_dead)
unix_collect_skb(&scc, hitlist);
else if (!unix_graph_maybe_cyclic)
unix_graph_maybe_cyclic = unix_scc_cyclic(&scc);
list_del(&scc);
}
list_replace_init(&unix_visited_vertices, &unix_unvisited_vertices);
}
static bool gc_in_progress;
static void __unix_gc(struct work_struct *work)
{
struct sk_buff_head hitlist;
struct sk_buff *skb;
spin_lock(&unix_gc_lock);
if (!unix_graph_maybe_cyclic) {
spin_unlock(&unix_gc_lock);
goto skip_gc;
}
__skb_queue_head_init(&hitlist);
if (unix_graph_grouped)
unix_walk_scc_fast(&hitlist);
else
unix_walk_scc(&hitlist);
spin_unlock(&unix_gc_lock);
skb_queue_walk(&hitlist, skb) {
if (UNIXCB(skb).fp)
UNIXCB(skb).fp->dead = true;
}
__skb_queue_purge(&hitlist);
skip_gc:
WRITE_ONCE(gc_in_progress, false);
}
static DECLARE_WORK(unix_gc_work, __unix_gc);
void unix_gc(void)
{
WRITE_ONCE(gc_in_progress, true);
queue_work(system_unbound_wq, &unix_gc_work);
}
#define UNIX_INFLIGHT_TRIGGER_GC 16000
#define UNIX_INFLIGHT_SANE_USER (SCM_MAX_FD * 8)
void wait_for_unix_gc(struct scm_fp_list *fpl)
{
/* If number of inflight sockets is insane,
* force a garbage collect right now.
*
* Paired with the WRITE_ONCE() in unix_inflight(),
* unix_notinflight(), and __unix_gc().
*/
if (READ_ONCE(unix_tot_inflight) > UNIX_INFLIGHT_TRIGGER_GC &&
!READ_ONCE(gc_in_progress))
unix_gc();
/* Penalise users who want to send AF_UNIX sockets
* but whose sockets have not been received yet.
*/
if (!fpl || !fpl->count_unix ||
READ_ONCE(fpl->user->unix_inflight) < UNIX_INFLIGHT_SANE_USER)
return;
if (READ_ONCE(gc_in_progress))
flush_work(&unix_gc_work);
}